Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97771
DC FieldValueLanguage
dc.contributor呂維茗zh_TW
dc.contributorWei-Ming Leuen_US
dc.contributor.author柯亭君zh_TW
dc.contributor.authorTing-Jyun Keen_US
dc.contributor.other生物科技學研究所zh_TW
dc.date2018zh_TW
dc.date.accessioned2019-03-22T06:05:10Z-
dc.identifier.citation參考文獻 林慶元(2007) 植物保護圖鑑系列‐水稻保護,行政院農業委員會動植物防疫檢疫局。 陳隆澤,黃守宏,鄭清煥(2009) 水稻病蟲害抗性檢定工作回顧,台灣水稻保護成果及新展望研討會專刊: 83‐103。 李長沛,吳東鴻等(2014) 野生稻Oryza nivara抗褐飛蝨基因導入系統的抗性基因定位研究。研討會論文 宋怡萱(2017)野生稻Oryza nivara的Bph31(t)抗褐飛蝨基因座之精細定位與抗性分析 Chelliah, S., & Bharathi, M. (1993). Biotypes of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae)—host inXuenced biology and behavior. Chemical ecology of phytopathogous insects. International Science Publishers, New York, 133-148. Cheng, X., Zhu, L., & He, G. (2013). Towards understanding of molecular interactions between rice and the brown planthopper. Molecular plant, 6(3), 621-634. Du, B., Zhang, W., Liu, B., Hu, J., Wei, Z., Shi, Z., ... & He, G. (2009). Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proceedings of the National Academy of Sciences, pnas-0912139106. Du, Y., Zhang, J., Yan, Z., Ma, Y., Yang, M., Zhang, M., ... & Cao, Q. (2016). Host preference and performance of the yellow peach moth (Conogethes punctiferalis) on chestnut cultivars. PloS one, 11(6), e0157609. Fujisaki, K., Abe, Y., Ito, A., Saitoh, H., Yoshida, K., Kanzaki, H., ... & Terauchi, R. (2015). Rice Exo70 interacts with a fungal effector, AVR‐Pii, and is required for AVR‐Pii‐triggered immunity. The Plant Journal, 83(5), 875-887. Fujita, D., Kohli, A., & Horgan, F. G. (2013). Rice resistance to planthoppers and leafhoppers. Critical reviews in plant sciences, 32(3), 162-191. Guo, J., Xu, C., Wu, D., Zhao, Y., Qiu, Y., Wang, X., ... & Shangguan, X. (2018). Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nature genetics, 50(2), 297. Hu, L., Wu, Y., Wu, D., Rao, W., Guo, J., Ma, Y., ... & Huang, J. (2017). The coiled-coil and nucleotide binding domains of BROWN PLANTHOPPER RESISTANCE14 function in signaling and resistance against planthopper in rice. The Plant Cell, tpc-00263. Jena, K. K., & Kim, S. M. (2010). Current status of brown planthopper (BPH) resistance and genetics. Rice, 3(2-3), 161-171. Ji, H., Kim, S. R., Kim, Y. H., Suh, J. P., Park, H. M., Sreenivasulu, N., ... & Lee, G. S. (2016). Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to brown planthopper (BPH) insect pest. Scientific reports, 6, 34376. Kumar, K., Sarao, P. S., Bhatia, D., Neelam, K., Kaur, A., Mangat, G. S., ... & Singh, K. (2017). High-resolution genetic mapping of a novel brown planthopper resistance locus, Bph34 in Oryza sativa L. X Oryza nivara (Sharma & Shastry) derived interspecific F 2 population. Theoretical and Applied Genetics, 1-9. Ling, Y., & Weilin, Z. (2016). Genetic and biochemical mechanisms of rice resistance to planthopper. Plant cell reports, 35(8), 1559-1572. Liu, Y., Wu, H., Chen, H., Liu, Y., He, J., Kang, H., ... & Zhou, F. (2015). A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nature biotechnology, 33(3), 301. Lv, W., Du, B., Shangguan, X., Zhao, Y., Pan, Y., Zhu, L., ... & He, G. (2014). BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism. BMC genomics, 15(1), 674. Myint, K. K. M., Fujita, D., Matsumura, M., Sonoda, T., Yoshimura, A., & Yasui, H. (2012). Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stål]) in the rice cultivar ADR52. Theoretical and applied genetics, 124(3), 495-504. Prahalada, G. D., Shivakumar, N., Lohithaswa, H. C., Gowda, D. S., Ramkumar, G., Kim, S. R., ... & Jena, K. K. (2017). Identification and fine mapping of a new gene, BPH31 conferring resistance to brown planthopper biotype 4 of India to improve rice, Oryza sativa L. Rice, 10(1), 41. Ren, J., Gao, F., Wu, X., Lu, X., Zeng, L., Lv, J., ... & Ren, G. (2016). Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Scientific reports, 6, 37645. Sogawa, K., & Cheng, C. H. (1979). Economic thresholds, nature of damage, and losses caused by the brown planthopper. Brown planthopper: Threat to rice production in Asia. International Rice Res. Institute, Manila, 125-142. SRIVASTAVA, C., Chander, S., Sinha, S. R., & Palta, R. K. (2009). Toxicity of various insecticides against Delhi and Palla population of brown plant hopper (Nilaparvata lugens).. Stegmann, M., Anderson, R. G., Ichimura, K., Pecenkova, T., Reuter, P., Žárský, V., ... & Trujillo, M. (2012). The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in Arabidopsis. The Plant Cell, tpc-112. Sun, Z., Liu, Z., Zhou, W., Jin, H., Liu, H., Zhou, A., ... & Wang, M. Q. (2016). Temporal interactions of plant-insect-predator after infection of bacterial pathogen on rice plants. Scientific reports, 6, 26043. Tamura, Y., Hattori, M., Yoshioka, H., Yoshioka, M., Takahashi, A., Wu, J., ... & Yasui, H. (2014). Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Scientific reports, 4, 5872. Tamura, Y., Hattori, M., Yoshioka, H., Yoshioka, M., Takahashi, A., Wu, J., ... & Yasui, H. (2014). Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Scientific reports, 4, 5872. Wang, Y., Cao, L., Zhang, Y., Cao, C., Liu, F., Huang, F., ... & Luo, X. (2015). Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. Journal of experimental botany, 66(19), 6035-6045. Wang, Y., Tang, M., Hao, P., Yang, Z., Zhu, L., & He, G. (2008). Penetration into rice tissues by brown planthopper and fine structure of the salivary sheaths. Entomologia Experimentalis et Applicata, 129(3), 295-307. Žárský, V., Kulich, I., Fendrych, M., & Pečenková, T. (2013). Exocyst complexes multiple functions in plant cells secretory pathways. Current opinion in plant biology, 16(6), 726-733. Zhao, Y., Huang, J., Wang, Z., Jing, S., Wang, Y., Ouyang, Y., ... & Pan, Y. (2016). Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proceedings of the National Academy of Sciences, 113(45), 12850-12855.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/97771-
dc.description.abstract重要作物水稻經常受到具有高度傷害性的褐飛蝨brown planthopper (BPH, Nilaparvata lugens Stål)侵襲,此單食性的昆蟲會以刺吸式口器吸取韌皮部汁液,並間接傳染病毒,導致產量銳減,由於抗蟲水稻有迫切需求,故行政院農業委員會農業試驗所(TARI)將印度野生稻O. nivara的顯性抗褐飛蝨基因Bph31(t)導入台農71品系(TNG71,又名KN188)中,選育出KN210品系(TNG71-Bph31(t)),抗性檢定發現KN210高達3.6,而KN188僅為7。本實驗中,利用抗性(KN210)與感性(KN188)兩品系的水稻進行抗蟲機制的分析,在antixenosi方面,發現較高比例的褐飛蝨會選擇KN188棲息,由Y型嗅覺儀實驗確認應是因氣味所致,並找到一個僅出現於KN188水稻的氣味分子,可能具有誘引褐飛蝨的效果,將續進行深入探討。檢查KN210是否亦有antibiosis抗性,發現褐飛蝨有從KN210移動到KN188的偏好性,且限制在KN210上攝食的褐飛蝨其生長速度較低而死亡率較高,檢測植物萃取物,發現有三個成分會因為褐飛蝨取食而改變含量,但尚待質譜分析鑑定。而在tolerance方面,發現KN210顯著較KN188強健,單位時間內失重較少,且在KN188全數死亡時仍全數存活。經由比較兩品系的理化性質差異,發現KN210的莖稈較硬,篩管較為狹窄,且總醣含量較高,callose也較易累積,可能導致褐飛蝨取食KN210較為困難。以上證據顯示KN210具有多面向的優良抗性,應可穩定提供水稻抵抗褐飛蝨侵襲,值得選殖其抗性基因。初步定位分析顯示Bph31(t)基因座位於4號染色體上,對褐飛蝨的抗性變異解釋量(Proportions of Variance Explained, PVE)高,且文獻未曾有報導,未來將自O. nivara的基因組中尋求此抗性基因。zh_TW
dc.description.abstractBrown planthopper (BPH) is the most devastating insect pest in rice-growing areas and cause enormous yield loss. BPH is a monophagous phloem feeder on rice which removes a significant amount of photoassimilates and causes its wilting. Breeding and planting of BPH-resistance rice lines are the most sustainable and environmental friendly ways to cope with BPH infestation. As the BPH-resistance genes are mainly exist in wild rice, Taiwan Agricultural Research Institute (TARI) had introduced a single dominant BPH-resistant locus from the wild rice O. nivara into the local elite cultivar TNG71 (KN188) to generate its near-isogenic line, KN210, via a 10-year breeding process. Evaluations of BPH-resistance revealed that KN210 possesses BPH resistance index as high as 3.6, compared to 7 for the KN188. In this study, we compared KN210 against KN188 to explore its BPH resistance mechanism. In the settling-choice test, BPH showed a higher frequency on choosing KN188 than KN210 as host, indicates an antixenosis resistance for KN210. Confirmed by Y-tube test, volatile compound searched by GC-MS revealed one compound, exists only in KN188, may act as an insect attractant. In the feeding-preference test, BPH kept on moving from KN210 to KN188 during a time period of 72 hrs, suggests that some resistance actions may be exerted in KN210 after BPH infestation. Moreover, the no-choice test with confined BPH revealed higher lethal rates and lower growth rates on KN210 than on KN188. These observations suggest an antibiosis to BPH in which some toxic proteins or secondary metabolites may be produced by KN210. Moreover, as all tested KN188 plants died while all KN210 survived on day 15 after heavy BPH infestation, together with a lower functional plant loss index (FPLI) found in KN210, suggest a tolerance ability for KN210. Overall, heavy cell wall composition, higher resistance in stem penetration, narrower phloem for sap ingestion, and spotted callose deposition hindrance, all provide KN210 with multiple ways to reduce the BPH infestation. Previously, crude mapping has revealed that the BPH-resistance gene, temporally named as Bph31(t), was located on chromosome 4. Future molecular cloning of Bph31(t) needs to be performed on the whole genome sequenced O. nivara.en_US
dc.description.tableofcontents目錄 壹、前言 1 貳、前人研究 2 参、材料與方法 6 一、褐飛蝨抗性水稻的來源 6 二、褐飛蝨行為與抗性水稻互作關係探討 6 三、水稻的物理、化學性質分析與解剖顯微分析 8 四、水稻褐飛蝨抗性的外表型檢測、基因型檢測與RNA定量分析 10 肆、結果 14 一、褐飛蝨行為與抗性水稻的相互關係 14 二、探討KN188和KN210的差異推測造成抗性的成因 17 三、Bph31(t)的細部定位分析 19 伍、討論 21 一、褐飛蝨行為與抗性水稻的相互關係 21 二、由KN188和KN210的差異推測KN210多重抗性的成因 22 三、KN210抗性的延伸探討 23 四、Bph31(t )基因區間的探討 23 陸、 參考文獻 25 柒、圖 28 圖一、褐飛蝨的棲息偏好性 (settling preference) 28 圖二、褐飛蝨於Y型嗅覺儀的行為 29 圖三、水稻植株氣相層析質譜分析 (Gas chromatography–mass spectrometry,GC-MS) 30 圖四、褐飛蝨的攝食偏好性 (feeding preference) 31 圖五、褐飛蝨在水稻上的(A)生長速率以及(B)存活率 32 圖六、高效能液相色層分析儀 ( HPLC ) 之層析圖 33 圖七、水稻植株受褐飛蝨侵襲後存活率 34 圖八、量測 FPLI (Functional plant loss index)與PDWL (Plant dry weight loss to BPH weight produced) 35 圖九、掃描式電子顯微鏡分析莖部表皮構造 (by 生醫工程研究所林淑萍老師) 37 圖十、硬度質地測試 (by 農業試驗所吳東鴻博士) 38 圖十一、可溶性醣類分析 39 圖十二 、水稻根、莖、葉的澱粉含量檢查 40 圖十三、共軛聚焦顯微鏡分析KN210和KN188葉鞘的橫剖面圖 41 圖十四、共軛聚焦顯微鏡分析KN210和KN188葉鞘的橫剖面圖 42 圖十五、Callose 的相關分析 43 圖十六、水稻活性氧物質(reactive oxygen species, ROS)含量 44 圖十七、抗感水稻表現型的觀察 45 圖十八、判斷植株抗感表現的依據(對照組) 46 附錄一、褐飛蝨的口針鞘 47 附錄二、抗性水稻KN210的育種過程與各分析所使用之樣品 48 附錄三、目前已被定位於水稻染色體的抗褐飛 蝨QTL 49 附錄四、抗性基因不同的反應途徑 50 附錄五、 Y型嗅覺儀 51 附錄六、 水稻節點分布圖 52 附錄七、 pUC19-GNS5si & pEpyon32H-GNS5si 54 附錄八、Bph31(t)基因座須有F2自交種出F2:3植株才能進行抗褐飛蝨秧苗期檢定法(SSST) 55 附錄九、褐飛蝨生物小種與不同抗性基因來源的關係 56zh_TW
dc.language.isozh_TWzh_TW
dc.rights不同意授權瀏覽/列印電子全文服務zh_TW
dc.subject抗褐飛蝨基因座zh_TW
dc.subjectBph31(t)zh_TW
dc.subjectBph31(t)en_US
dc.subjectbrown planthopperen_US
dc.subjectresistance locusen_US
dc.title野生稻Oryza nivara抗褐飛蝨基因座Bph31(t)之抗性機制分析與精細定位zh_TW
dc.titleResistance characterization and fine mapping of Bph31(t), a brown planthopper resistance locus from wild rice Oryza nivaraen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2021-08-30zh_TW
dc.date.openaccess10000-01-01-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypethesis and dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:生物科技學研究所
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105041052-1.pdf4.24 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.