Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97774
DC FieldValueLanguage
dc.contributor楊長賢zh_TW
dc.contributorChang-Hsien Yangen_US
dc.contributor.author曹晉瑋zh_TW
dc.contributor.authorChin-Wei Tsaoen_US
dc.contributor.other生物科技學研究所zh_TW
dc.date2018zh_TW
dc.date.accessioned2019-03-22T06:05:11Z-
dc.identifier.citationAalen, R. B., Wildhagen, M., Stø, I. M., & Butenko, M. A. (2013). IDA: a peptide ligand regulating cell separation processes in Arabidopsis. Journal of Experimental Botany, 64, 5253-5261. Adamczyk, B.J., Lehti-Shiu, M.D., and Fernandez, D.E. (2007). The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant Journal, 50, 1007-1019. Alonso, J. M., & Ecker, J. R. (2001). The ethylene pathway: a paradigm for plant hormone signaling and interaction. Sci. STKE, 2001(70), re1-re1. Arora, A. (2005). Ethylene receptors and molecular mechanism of ethylene sensitivity in plants. Current Science 89, 1348-1361. Avila-Ospina, L., Moison, M., Yoshimoto, K., & Masclaux-Daubresse, C. (2014). Autophagy, plant senescence, and nutrient recycling. Journal of Experimental Botany, 65, 3799-3811. Berendzen, K. W., Böhmer, M., Wallmeroth, N., Peter, S., Vesić, M., Zhou, Y., ... & Harter, K. (2012). Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry. Plant Methods, 8, 25. Bleecker, A. B., & Patterson, S. E. (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell, 9, 1169. Bracha‐Drori, K., Shichrur, K., Katz, A., Oliva, M., Angelovici, R., Yalovsky, S., & Ohad, N. (2004). Detection of protein–protein interactions in plants using bimolecular fluorescence complementation. Plant Journal, 40, 419-427. Chang, X., Donnelly, L., Sun, D., Rao, J., Reid, M. S., & Jiang, C. Z. (2014). A petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower enescence. PLoS One, 9, e88320. Chen, M. K., Hsu, W. H., Lee, P. F., Thiruvengadam, M., Chen, H. I., & Yang, C. H.(2011). The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant Journal, 68, 168-185. Chen, W. H., Li, P. F., Chen, M. K., Lee, Y. I., & Yang, C. H. (2015). FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-binding Factors (EDFs), by Activating An Ethylene-Responsive Factor (ERF), to Control Arabidopsis Floral Organ Senescence and Abscission. Plant Physiology, pp-00433. 23 de Folter, S., Immink, R. G., Kieffer, M., Pařenicová, L., Henz, S. R., Weigel, D., ... & Davies, B. (2005). Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell, 17, 1424-1433. Fernandez, D. E., Heck, G. R., Perry, S. E., Patterson, S. E., Bleecker, A. B., & Fang, S. C. (2000). The embryo MADS domain factor AGL15 acts postembryonically: inhibition of perianth senescence and abscission via constitutive expression. Plant Cell, 12, 183-197. Forster, T. (1946). Energiewanderung und fluoreszenz. Naturwissenschaften, 33, 166-175. Ghosh I, Hamilton AD, Regan L. (2000) Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J Am Chem Soc 122: 5658–5659. Guo, H., & Ecker, J. R. (2004). The ethylene signaling pathway: new insights. Current Opinion in Plant Biology, 7, 40-49. Hellman, L. M., & Fried, M. G. (2007). Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nature Protocols, 2, 1849. Hepworth, S. R., Zhang, Y., McKim, S., Li, X., & Haughn, G. W. (2005). BLADEON- PETIOLE–dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell, 17, 1434-1448. Hsu, H. F., Hsu, W. H., Lee, Y. I., Mao, W. T., Yang, J. Y., Li, J. Y., & Yang, C. H. (2015). Model for perianth formation in orchids. Nature Plants, 1, 15046. Hu, C. D., Chinenov, Y., & Kerppola, T. K. (2002). Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Molecular Cell, 9, 789-798. Ju, C., Yoon, G. M., Shemansky, J. M., Lin, D. Y., Ying, Z. I., Chang, J., ... & Cooper, B. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proceedings of the National Academy of Sciences, 109, 19486-19491. Kaufmann, K., Melzer, R., & Theißen, G. (2005). MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 347, 183-198. Koyama, T. (2014). The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Frontiers in Plant Science, 5, 650. Li, W., Ma, M., Feng, Y., Li, H., Wang, Y., Ma, Y., ... & Guo, H. (2015). EIN2- directed translational regulation of ethylene signaling in Arabidopsis. Cell, 163, 670-683. 24 Li, Z., Peng, J., Wen, X., & Guo, H. (2013). Ethylene-insensitive3 is a senescenceassociated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell, 25, 3311-3328. Liao, W., Li, Y., Yang, Y., Wang, G., & Peng, M. (2016). Exposure to various abscission-promoting treatments suggests substantial ERF subfamily transcription factors involvement in the regulation of cassava leaf abscission. BMC Genomics, 17, 538. Magliery, T. J., Wilson, C. G., Pan, W., Mishler, D., Ghosh, I., Hamilton, A. D., & Regan, L. (2005). Detecting protein− protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. Journal of the American Chemical Society, 127, 146-157. Mao, W. T., Hsu, H. F., Hsu, W. H., Li, J. Y., Lee, Y. I., & Yang, C. H. (2015). The Cterminal sequence and PI motif of the orchid (Oncidium Gower Ramsey) PISTILLATA (PI) ortholog determine its ability to bind AP3 orthologs and enter the nucleus to regulate downstream genes controlling petal and stamen formation. Plant and Cell Physiology, 56, 2079-2099. McKim, S. M., Stenvik, G. E., Butenko, M. A., Kristiansen, W., Cho, S. K., Hepworth, S. R., ... & Haughn, G. W. (2008). The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development, 135, 1537-1546. Nakano, T., Fujisawa, M., Shima, Y., & Ito, Y. (2014). The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. Journal of Experimental Botany, 65, 3111-3119. Norberg, M., Holmlund, M., & Nilsson, O. (2005). The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development, 132, 2203-2213. Ohashi, K., Kiuchi, T., Shoji, K., Sampei, K., & Mizuno, K. (2012). Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments. Biotechniques, 52, 45-50. Patterson, S. E., & Bleecker, A. B. (2004). Ethylene-dependent and-independent processes associated with floral organ abscission in Arabidopsis. Plant Physiology, 134, 194-203. Purugganan, M. D., Rounsley, S. D., Schmidt, R. J., & Yanofsky, M. F. (1995). Molecular evolution of flower development: diversification of the plant MADSbox regulatory gene family. Genetics, 140, 345-356. 25 Ruelens, P., Zhang, Z., Van Mourik, H., Maere, S., Kaufmann, K., & Geuten, K. (2017). The origin of floral organ identity quartets. Plant Cell, 229-242. Schenk, P. M., Kazan, K., Rusu, A. G., Manners, J. M., & Maclean, D. J. (2005). The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiology and Biochemistry, 43, 997-1005. Smyth, D. R., Bowman, J. L., & Meyerowitz, E. M. (1990). Early flower development in Arabidopsis. Plant Cell, 2, 755-767. Theißen, G. (2001). Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology, 4, 75-85. Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J. T., Münster, T., ... & Saedler, H. (2000). A short history of MADS-box genes in plants. In Plant Molecular Evolution (pp. 115-149). Springer, Dordrecht. Theißen, G., Melzer, R., & Rümpler, F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development, 143, 3259-3271. Walter, M., Chaban, C., Schütze, K., Batistic, O., Weckermann, K., Näke, C., ... & Harter, K. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. The Plant Journal, 40, 428-438. Wang, K. L. C., Yoshida, H., Lurin, C., & Ecker, J. R. (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature, 428(6986), 945. Xie, Q., Hu, Z., Zhu, Z., Dong, T., Zhao, Z., Cui, B., & Chen, G. (2014). Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato. Scientific Reports, 4, 4367. Xing, S., Wallmeroth, N., Berendzen, K. W., & Grefen, C. (2016). Techniques for the analysis of protein-protein interactions in vivo. Plant Physiology, 171, 727-758. Xu, A., Zhang, W., & Wen, C. K. (2014). ENHANCING ctr1-10 ETHYLENE RESPONSE2 is a novel allele involved in CONSTITUTIVE TRIPLERESPONSE1- mediated ethylene receptor signaling in Arabidopsis. BMC Plant Biology, 14, 48. Yasumura, Y., Pierik, R., Kelly, S., Sakuta, M., Voesenek, L. A., & Harberd, N. P. (2015). An ancestral role for CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) proteins in both ethylene and abscisic acid signaling. Plant Physiology, 283-298. Yoo, S. K., Hong, S. M., Lee, J. S., & Ahn, J. H. (2011). A genetic screen for leaf movement mutants identifies a potential role for AGAMOUS-LIKE 6 (AGL6) in circadian-clock control. Molecules and Cells, 31, 281-287. 26 Zahn, L. M., Kong, H., Leebens-Mack, J. H., Kim, S., Soltis, P. S., Landherr, L. L., ... & Ma, H. (2005). The evolution of the SEPALLATA subfamily of MADSbox genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics, 169, 2209-2223. Zhong, S., Zhao, M., Shi, T., Shi, H., An, F., Zhao, Q., & Guo, H. (2009). EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proceedings of the National Academy of Sciences, 21431- 21436.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/97774-
dc.description.abstractFYF 為一個MADS-BOX 蛋白可以藉由促進FUF1 抑制EDF1-4、BOP1/2、 IDA 基因延緩花朵的老化和脫落。為了知道哪些蛋白參與了FYF 所形成的蛋白 四聚體以調控花朵的老化和凋落,利用酵母菌雙雜交系統的篩選找出和FYF 具 有交互作用的候選蛋白。其中發現AGL6 是一可與FYF 進行交互作用的候選蛋 白。為進一步探討AGL6 與花朵的老化和凋落之關係,將35S::AGL6 及 35::AGL6+SRDX 轉殖入阿拉伯芥,並分析轉殖植株之性狀。結果發現在兩種轉 基因阿拉伯芥中都有早開花的情況,此外35S::AGL6+SRDX 可以藉由抑制 EDF1/2、IDA、BOP1 產生延緩花朵老化凋落的性狀。為了進一步證實酵母菌雙 雜交系統篩選結果的真實性的利用螢光共振能量轉移實驗來確認此項結果,發現 AGL6 可以幫助FYF 進入細胞核,並且兩者間FRET 效率有55%。FRET 的效率 和蛋白之間的距離是成反比的,FRET 效率越高表示兩蛋白之間距離越近。在FYF 與候選基因AGL15 的交互作用中發現,FYF 可與AGL15 和AGL6 穩定形成四 聚體,AGL71 為另外一個FYF 的候選交互作用蛋白,AGL71 也可以與AGL15 和兩份AGL6 形成穩定四聚體。上述之結果顯示AGL71 能夠取代FYF 與AGL6 和AGL15 交互作用形成四聚體。總結來說,當AGL6 扮演著一個抑制子的角色 時和FYF 一樣可以延緩花朵老化脫落。未來將更加了解MADS-Box 蛋白間的交 互作用關係,藉以建立MADS-Box 蛋白調控花朵老化脫落的模型。zh_TW
dc.description.abstractFOREVER YOUNG FLOWER (FYF), a MADS-Box gene can delay flower senescence and abscission by up-regulating FYF UP-REGULATING FACTOR 1 (FUF1) and repressing ETHYLENE RESPONSE FACTOR1-4 (EDF1-4), BLADE ON PETIOLE 1/2 (BOP1/2) and INFLORESCENCE DEFICIENT IN ABSCISSION (IDA). To explore proteins formed tetramer protein complex with FYF in regulating flower senescence/abscission, yeast-two-hybrid screen was performed. AGAMOUS-LIKE 6 (AGL6), one of the potential FYF interacting proteins was identified. To further analyze the function of AGL6 in regulating flower senescence and abscission, 35S::AGL6, 35::AGL6+SRDX transgenic Arabidopsis were generated. Early flowering was observed in these two different types of transgenic Arabidopsis. In addition, 35S::AGL6+SRDX could delay flower senescence/abscission by repressing EDF1/2, IDA, BOP1 in transgenic Arabidopsis. The further confirm the interaction between FYF and AGL6, fluorescence resonance energy transfer (FRET) was used. The result indicated that AGL6 is able to help FYF to transport into the nucleus and the FRET efficiency between FYF and AGL6 is about 55%. It is well known that FRET efficiency and proteins distance are inversely proportional. The higher FRET efficiency indicates the shorter distance between two proteins. AGL15, the other candidate interaction protein which could form a protein tetramer with FYF and AGL6. AGL71 also could form a tetramer with AGL15 and AGL6. The result indicated that AGL71 could replace FYF to form a tetramer with AGL15 and AGL6. In the future, how MADS-box protein to form tetramer protein complex in regulating flower senescence and abscission will be further analyzed.en_US
dc.description.tableofcontents摘要 .............. i Abstract......... ii 前言 ...............1 材料方法 ........5 一、研究材料........5 二、阿拉伯芥之種植...5 三、阿拉伯芥total RNA 之萃取...5 四、反轉錄增幅反應(Reverse transcription, RT)...6 五、即時定量聚合酵素連鎖反應 (Real -time PCR) ...6 六、聚合酵素連鎖反應(Polymerase chain reaction, PCR)...6 七、瓊脂凝膠膠片之配製...7 八、瓊脂凝膠電泳(Electrophoresis)...7 九、DNA片段之回收純化(Gel extraction)...7 十、接合反應(Ligation)...8 十一、大腸桿菌勝任細胞(Competent cell) 之製備...8 十二、細胞轉形作用 (Transformation)...8 十三、高純度小量質體DNA 之抽取 (plasmid extration)...8 十四、限制酵素截切(Digestion)...9 十五、DNA自動定序與序列比對...9 十六、農桿菌勝任細胞之製備...9 十七、農桿菌快速冷凍轉形(Freeze-thaw method)...10 十八、阿拉伯芥之基因轉殖...10 十九、轉基因植物之篩選...10 二十、阿拉伯芥genomic DNA 之萃取...11 二十一、目標基因選殖方法...11 二十二、螢光共振能量轉移...11 結果 .......................................13 一、AGL6 於阿拉伯芥各時期與各部位的花當中的表現量分析.......................13 二、AGL6、AGL6+SRDX 表現分析與載體構築............................13 三、異位表現 AGL6 和AGL6+SRDX 促使轉殖株提早開花.............................14 四、異位表現 AGL6+SRDX 延緩轉殖株凋落.......................14 五、異位表現 AGL6+SRDX 基因轉殖植株中,乙烯訊息傳遞路徑下游基因及 離層形成相關基因的表現情形受到抑制 ...................14 六、AGL6、FYF 與AGL15 能夠形成穩定的四聚體........................................15 七、AGL71 跟FYF 偏好在不同蛋白組合進行作用...........................................16 八、AGL6、AGL71 與AGL15 能夠形成穩定的四聚體...................................16 九、AGL18 跟AGL19 皆不會與FYF 跟AGL6 形成四聚體............................17 十、異位表現 FYF 使AGL6、AGL15 和AGL18 表現量提高...........................18 討論 .......................19 參考文獻 .......................23 圖表 ............................28 表 1.本篇文章所使用之PCR 引子(primer)序列..................28 表 2.野生型、異位表現AGL6 與AGL6+SRDX 轉殖株之開花天數與葉片數統計.......................29 表 3.野生型、異位表現AGL6+SRDX 轉殖株之花朵脫落朵數統計...............29 圖 1. AGL6 與FYF 在各時期表現量相近.....................30 圖 2. AGL6 cDNA 分子選質與構築之示意膠圖....................31 圖 3.異位表現AGL6 造成轉植株早開花..............................32 圖 4.異位表現AGL6+SRDX 轉殖株,花朵延緩掉落與花器異常.....................33 圖 5.異位表現AGL6+SRDX對乙烯下游相關基因與離層相關基因的影響.............34 圖 6.以螢光共振能量轉移探討活體細胞中FYF、AGL15 和AGL6 蛋白之間相互作用關係.............35 圖 7.以螢光共振能量轉移探討活體細胞中FYF、AGL15 和AGL6 蛋白之間相互作用關係............36 圖 8.以螢光共振能量轉移探討活體細胞中FYF、AGL71 和AGL6 蛋白之間相互作用關係..............37 圖9. FYF-C+AGL71-Y 、FYF-C+AGL71-Y+2AGL6 四聚體間蛋白交互作用之分析................38 圖 10.以螢光共振能量轉移探討活體細胞中FYF、AGL15 和AGL6 蛋白之間相互作用關係.............39 圖 11.以螢光共振能量轉移探討活體細胞中AGL71、AGL15 和AGL6 蛋白之間相互作用關係............40 圖 12.以螢光共振能量轉移探討活體細胞中FYF、AGL18 或AGL19 和 AGL6 蛋白之間相互作用關係...............41 圖 13.異位表現FYF 使AGL6、AGL15 和AGL18 表現量提高.........................42 圖 14. AGL6 與AGL15 分別跟FYF 或AGL71 在小花苞形成四聚體抑制離層 相關基因延緩花朵脫落...........43 附圖 1.植物MADS-box 基因MIKC-type 蛋白質結構示意圖............................44 附圖 2.植物MADS-box 基因ABCDE model 在各花器的四聚體模式.............45 附圖 3.阿拉伯芥(Arabidopsis thaliana)中MADS-box 基因的親緣關係圖........46 附圖 4.阿拉伯芥花朵發育各時期及示意圖......47 附圖 5.阿拉伯芥(Arabidopsis thaliana)中MADS-box 基因yeast-two-hybrid 的關係圖..........48 附圖 6. FRET efficiency 與距離關係曲線圖.........49 附圖 7. pGEM® -T Easy vector 之圖譜.................................................................50 附圖 8.利用35S 啟動子大量表現目標基因,pEpyon-22K 之圖譜...................51 附圖 9.目標基因C 端接上一段抑制子模組的重組蛋白,使可以得到dominant repression 的效果,pEpyon-2aK 之圖譜....52 附圖 10. Gen-KB DNA Ladder .........53zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2018-08-30起公開。zh_TW
dc.subjectAGL6zh_TW
dc.subjectAGL6en_US
dc.title阿拉伯芥中 FYF 可能的複合體研究與AGL6 的功能性分析zh_TW
dc.titleCharacterization of FYF protein complexes and functional analysis of AGL6 in Arabidopsisen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2021-08-30zh_TW
dc.date.openaccess2018-08-30-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypethesis and dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:生物科技學研究所
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105041020-1.pdf6.31 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.