Please use this identifier to cite or link to this item:
標題: 智慧型無刷直流馬達風扇應用於禽舍通風節能之研究
Study on Energy Saving Using Smart Brushless DC Motor Fans in Poultry Houses Ventilation
作者: 徐暘
Yang Hsu
關鍵字: 禽流感;無刷直流馬達;環境控制;avian influenza;brushless DC motor;environmental control
引用: 1. 中央畜產會。2015。農業產值。網址: 上網日期:2018-03-29 2. 中國國家標準局網站 。2014。工業用風機-以標準化風道進行性能試驗。網址:。 上網日期:2018-01-04。 3. 中華民國養雞協會。1995。水簾式密閉雞舍技術研討會概要。網址:。 上網日期:2018-02-20。 4. 行政院農委會。2014。雞蛋友善生產系統定義及指南。網址:。上網日期:2018-4-18。 5. 行政院農委會。2014。非開放式禽舍之定義。網址: 上網日期:2018-3-18 6. 路昌工業股份有限公司。2014。從冷次定律到反電動式。網址:。 上網日期:2018-4-18。 7. 台灣東方馬達股份有限公司。何謂DC無刷馬達?。網址:。 上網日期:2018-4-18。 8. DMP Electronics Inc.。2013。馬達基本認識與 BLDC 驅動實驗。 網址:。 上網日期:2018-2-18 9. 黃裕益。2001。自然通風溫室之微氣候調節。農業自動化叢書第十一輯:33-40 10. 陳靜宜。1996。雞舍通風原理。世界家禽學。 11. 農傳媒。2017。【農百科】禽疫當前,何種飼養較抗病?先搞懂這些再說!。網址:。上網日期:2018-4-18。 12. 電工機械II。2018。網址。 上網日期:2018-4-18。 13. 廖洺漢/謝秋帆/嚴孝全。2015。機械設計 第五版。歐亞書局。 14. 戴任詔。2012。機電整合。高立圖書有限公司。 15. Becerra, R.C. and M. Ehsani. 1988. High-Speed Torque Control of Brushless Permanent Magnet Motors. IEEE Trans. Ind. Electron. 35:402-406. 16. Bonfe, M. and M. Bergo. 2008. A Brushless Motor Drive with Sensorless Control for Commercial Vehicle Hydraulic Pumps. In Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE): 612-617. 17. Bianchi, N., S. Bolognani, J.H. Jang, and S.K. Sul. 2007. Comparison of PM Motor Structures and Sensorless Control Techniques for Zero-Speed Rotor Position Detection. IEEE Trans. Power Electron. (22): 2466-2475. 18. Yedamale, P. 2003. Brushless DC (BLDC) motor fundamentals. Microchip Technology Inc. (20): 3-15. 19. Demmelmayr, F., M. Troyer and M. Schroedl. 2011. Advantages of PM-machines compared to induction machines in terms of efficiency and sensorless control in traction applications. IEEE. in IECON (37): 2762-2768. 20. De Broe, A. M. S. Drouilhet and V. Gevorgian. 1999. A peak power tracker for small wind turbines in battery charging applications. Energy Conversion, IEEE Transactions on 14(4): 1630-1635. 21. Damodharan, P., and K. Vasudevan. 2008. Indirect Back-EMF Zero Crossing Detection for Sensorless BLDC Motor Operation. PEDS: 1107-1111. 22. Gamazo-Real, J. C., E. Vázquez-Sánchez and J. Gómez-Gil. 2010. Position and speed control of brushless dc motors using sensorless techniques and application trends Sensors (10): 6901-6947. 23. Hassan, MA, AR Abdullah, N Bahari. and A Jidin. 2013.Incorporating brushless DC motor in outdoor fan control of low voltage air-conditioning system. Research and Development (SCOReD) IEEE Student Conference on. IEEE, 24. Hubik, V., M. Sveda and V. Singule. 2008. On the Development of BLDC Motor Control Run-Up Algorithms for Aerospace Application. Poznan. Poland .In Proceedings of the 13th Power Electronics and Motion Control Conference (EPE-PEMC): 1620-1624. 25. Iizuka, K., H. Uzuhashi, M. Kano, T. Endo. and K. Mohri. 1985. Microcomputer Control for Sensorless Brushless Motor. IEEE Trans. Ind. Appl. (IA-21): 595-601. 26. Miyamasu, M., and K. Akatsu. 2013. Efficiency comparison between Brushless dc motor and Brushless AC motor considering driving method and machine design. IEEJ Journal of Industry Applications (2.1): 79-86. 27. Narita, K., Y. Sakashita, T. Yamada and K. Akatsu. 2009. Iron loss calculation of PM motor by coupling analysis between magnetic field simulator and control simulator. International Conference on. IEEE. Electrical Machines and Systems. ICEMS 2009(1-6). 28. Naidu, M., T.W. Nehl, S. Gopalakrishnan and L. Wurth. 2005. Sensorless PM Brushless Drive for a 42-V Automotive HVAC Compressor. IEEE Ind. Appl. Mag. (11): 20-28. 29. Su, G.J. and J.W. McKeever. 2004. Low-Cost Sensorless Control of Brushless DC Motors with Improved Speed Range. IEEE Trans. Power Electron. (19): 296-302.

Since Taiwan has affected by avian influenza for years, government has placed importance on biosafety and has requested poultry farmers to raise poultry in closed-type, semi-open, or non-open poultry houses started from 2014. In view of environmental control systems in the poultry houses, fans are the equipment that consumes the most energy. To achieve the purpose of saving energy, this study intended to replace traditional AC induction motors of fans by smart brushless DC motors, and a control method was designed accordingly. It was expected that by these two means, electricity consumption, feed costs, and carbon dioxide emissions can be lessened.
A traditional AC induction motor and a smart brushless DC motor used in the study were to perform wind velocity measurement and to calculate ventilation rates and mean wind speed. A comparison of two motors was made according to wind energy computed by wind energy calculation formula. Besides, electric current, voltage, electricity consumption, and power factor were measured by a digital power meter to make data recording, analysis, and comparison. The results showed that in the same rounds per minute (rpm,) electricity consumption of a smart brushless DC motor was 60% of electricity consumed by a traditional AC induction motor, and there was not much difference in wind speed and ventilation rates. Therefore, a smart brushless DC motor proved to be more efficient than a traditional AC induction motor.
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-23起公開。
Appears in Collections:生物產業機電工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105040507-1.pdf6.86 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.