Please use this identifier to cite or link to this item:
標題: 在蘿蔔硫素抗胃癌效應中MCL-1上調之生物意義
Biological Significance of MCL-1 Upregulation in The Anti-Gastric Cancer Effect of Sulforaphane
作者: 李佳璇
Chia-Hsuan Li
關鍵字: 胃癌;蘿蔔硫素;MCL-1;ERK;NF-κB;抗藥性;Gastric cancer;Sulforaphane;MCL-1;ERK;NF-κB;Drug resistance
引用: 1. Cancer WHO fact sheet. World Health Organization, 2018. 2. 105年國人死因統計結果. 衛生福利部. 3. Gastric Cancer Treatment. National cancer institute. 4. B. Hu, et al., Gastric cancer: Classification, histology and application of molecular pathology. J Gastrointest Oncol, 2012. 3(3): p. 251-261. 5. P. Lauren, et al., The two histological maintypes of gastric carcinoma: diffuse and so-called instestinal-type carcinoma. An attempt at a histo-clinnical classification. Acta Pathol Microbiol Scand, 1965. 64: p. 31-49. 6. C. Wittekind, et al., The development of the TNM classification of gastric cancer. Pathology international, 2015. 65: p. 399-403 7. M. Orditura, et al., Treatment of gastric cancer. World J Gastroenterol, 2014. 20(7): p. 1635-1649. 8. Y. K. Kang, et al., Capecitabine/cisplatin versus 5-fluorouracil/cisplatin as first-line therapy in patients with advanced gastric cancer: a randomised phase III noninferiority trial. Ann Oncol, 2009. 20: p. 666-673. 9. V. Catalano, et al., Gastric cancer. Crit Rev Oncol Hematol, 2005. 54: p. 209-241. 10. Y. Zhang, et al., A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A, 1992. 89(6): p. 2399-2403. 11. K. P. Latte,et al., Health benefits and possible risks of broccoli—An overview. Food Chem Toxicol, 2011. 49(12): p. 3287-3309. 12. I. Herr, et al., Dietary constituents of broccoli and other cruciferous vegetables:Implications for prevention and therapy of cancer. Cancer Trea Rev, 2010. 36(5): p. 377-383. 13. D. A. Moreno, et al., Chemical and biologicalcharacterisation of nutraceutical compounds of broccoli. J Pharm Biomed Anal, 2006. 41(5): p. 1508-1522. 14. Y. Zhang. et al., Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin, 2007. 28(9): p. 1343-1354. 15. P. Naumann, Sulforaphane enhances irradiation effects in terms of perturbed cell cycle progression and increased DNA damage in pancreatic cancer cells. PLoS One, 2017. 12(7): p. e0180940. 16. N. A. Pham, et al., The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol Cancer Ther, 2004; 3: p. 1239-1248. 17. P. Arcidiacono, et al., Antitumor activity and expression profiles of genes induced by sulforaphane in human melanoma cells. Eur J Nutr, 2017. p. 1-23. 18. S. H. Kim, et al., Sulforaphane sensitizes human breast cancer cells to paclitaxel-induced apoptosis by downregulating the NF-κB signaling pathway. Oncol Lett, 2017. 13(6): p. 4427-4432. 19. A. Lewinska, et al., Sulforaphane-induced cell cycle arrest and senescence are accompanied by DNA hypomethylation and changes in microRNA Profile in breast cancer cells. Theranostics, 2017. 7(14): p. 3461-3477. 20. A. Pledgie-Tracy, et al., Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther, 2007. 6(3): p. 1013-1021. 21. A. Żuryń, et al., The effect of sulforaphane on the cell cycle, apoptosis and expression of cyclin D1 and p21 in the A549 non-small cell lung cancer cell line. Int J Oncol, 2016. 48(6): p. 2521-2533. 22. Y. Geng, et al., Sulforaphane induced apoptosis via promotion of mitochondrial fusion and ERK1/2-mediated 26S proteasome degradation of novel pro-survival bim and upregulation of Bax in human non-small cell lung cancer cells. J Cancer, 2017. 8(13): p. 2456-2470. 23. K. Suppipat, et al., Sulforaphane induces cell cycle arrest and apoptosis in acute lymphoblastic leukemia lells. PLoS One, 2012. 7(12): p. e51251. 24. V. J. Shivendra, et al., Sulforaphane-induced G2/M Phase Cell Cycle Arrest Involves Checkpoint Kinase 2-mediated Phosphorylation of Cell Division Cycle 25C. Biol Chem, 2004. 279(24): p. 25813-25822. 25. J. D. Clarke, et al., Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Food Res, 2011. 55: p. 999-1009. 26. C. S. Bryant, et al., Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells. Molecular Cancer, 2010. 9: p. 47. 27. D. Chaudhuri, Orsulic S, Ashok BT. Antiproliferative activity of sulforaphane in Akt-overexpressing ovarian cancer cells. Mol Cancer Ther 2007; 6: p. 334–345. 28. L. T. Chuang, et al., Sulforaphane induces growth arrest and apoptosis in human ovarian cancer cells. Acta Obstet Gynecol Scand, 2007. 86: p. 1263-1268. 29. G. P. L, et al., Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res, 2000. 60: p. 1426-1433. 30. J. W. Fahey, P. Talalay, Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes. Food Chem Toxicol, 1999. 37(9-10): p. 973-979. 31. T. W. Kensler, et al., Keap1-Nrf2 Signaling: A Target for Cancer Prevention by Sulforaphane. Top Curr Chem, 2013. 329: p. 163-177. 32. Y. K. Chung, Sulforaphane down-regulates SKP2 to stabilize p27 (KIP1) for inducing antiproliferation in human colon adenocarcinoma cells. J Biosci Bioeng, 2015. 119: p. 35-42. 33. K. M. Kozopas, et al., MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl Acad. Sci. USA, 1993. 90(8): p. 3516-3520. 34. J. L. Rinkenberger, et al., Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev, 2000. 14(1): p. 23-27. 35. J. T. Opferman, et al., Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature, 2003. 426(6967): 671-676. 36. Arbour, N. et al., Mcl-1 is a key regulator of apoptosis during CNS development and after DNA damage. J Neurosci, 2008. 28(24): p. 6068-6078. 37. J. T. Opferman, et al., Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science, 2005. 307(5712): p. 1101-1104. 38. M. Rechsteiner, S. W. Rogers, PEST sequences and regulation by proteolysis. Trends Biochem Sci, 1996. 21(7): p. 267-271. 39. A. M. Domina, et al., MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene, 2004. 23(31): p. 5301-5015. 40. L. W. Thomas, C. Lam, S. W. Edwards. Mcl-1; the molecular regulation of protein function. FEBS Lett, 2010. 584(14): p. 2981-2989. 41. W. Ding, et al., Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol Cell Biol, 2007. 27(11): p. 4006-4017. 42. W. Sieghart, et al., Mcl-1overexpression in hepatocellular carcinoma: A potential target for antisense therapy. J Hepatol, 2006. 44(1): p. 151. 43. L. Song , et al., Mcl-1 regulates survival and sensitivity to diverse apoptotic stimuli in human non-small cell lung cancer cells. Cancer Biol Ther, 2005. 4(3): p. 267-276. 44. Y. Miyamoto, et al., Immunohistochemical analysis of Bcl-2, Bax, Bcl-X, and Mcl-1 expression in pancreatic cancers. Oncology, 1999. 56: 73-82. 45. T. K. Chung, et al., Expression of apoptotic regulators and their significance in cervical cancer. Cancer Lett, 2002. 180: p. 63-68. 46. J. H. Cho-Vega, et al., MCL-1 expression in B-cell non-Hodgkin's lymphomas. Hum Pathol, 2004. 35: p. 1095-1100. 47. J. D. Khoury, et al., Expression of Mcl-1 in mantle cell lymphoma is associated with high-grade morphology, a high proliferative state, and p53 overexpression. J Pathol, 2003. 199: p. 90-97. 48. W. Shuang, et al., Mcl-1 stabilization confers resistance to taxol in human gastric cancer. Oncotarget, 2017. 8(47): p. 82981-82990. 49. D. L. Hermanson, et al., Overexpression of Mcl-1 Confers Multidrug Resistance, Whereas Topoisomerase IIβ Downregulation Introduces Mitoxantrone-Specific Drug Resistance in Acute Myeloid Leukemia. Mol Pharmacol, 2013. 84(2): p. 236-243. 50. B. A. Quinn, Targeting Mcl-1 for the therapy of cancer. Expert Opin Investig Drugs, 2011. 20(10): p. 1397-1411. 51. J. A. McCubrey, et al., Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta, 2007. 1773(8): p. 1263-1284. 52. S. Yoon, R. Seger, The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors, 2006. 24(1): p. 21-44. 53. J. W. Ramos, et al., The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol, 2008. 40(12): p. 2707-2719. 54. M. Karin, et al., NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer, 2002. 2(4): p.301-310. 55. N. D. Perkins, et al., Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol, 2007. 8(1): P. 49-62. 56. E. S. Henson, et al., Increased expression of Mcl‐1 is responsible for the blockage of TRAIL‐induced apoptosis mediated by EGF/ErbB1 signaling pathway. J Cell Biochem, 2003. 89(6): p. 1177. 57. C. Chang, et al., Increased oxidative DNA damage, inducible nitric oxide synthase, nuclear factor κB expression and enhanced antiapoptosis-related proteins in Helicobacter pylori-infected non-cardiac gastric adenocarcinoma. World J Gastroenterol, 2014. 10(15): p. 2232-2240. 58. M. S. Ricci, et al., Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell, 2007. 12(1): p. 66-80. 59. H. Liu, Yang J, et al., Regulation of Mcl-1 by constitutive activation of NF-κB contributes to cell viability in human esophageal squamous cell carcinoma cells. BMC Cancer, 2014. 14: p. 98. 60. E. K. Hertlein, et al., NF-κB Is Active in Mcl-1 Promoter Regulation in Human CLL. Blood, 2008. 112: p. 2265. 61. Yanaka, Sulforaphane enhances protection and repair of gastric mucosa against oxidative stress in vitro, and demonstrates anti-inflammatory effects on Helicobacter pyloriinfected gastric mucosae in mice and human subjects. Curr Pharm Des, 2011. 17(16): p.1532-1540. 62. JW. Fahey, et al., Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci U S A, 2002. 99(11): p. 7610-7615. 63. X. Wang, et al., Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Sci Rep, 2016. 6: p. 36796. 64. L. Gamet-Payrastre, et al., Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer research, 2000. 60(5): p. 1426-1433. 65. K. Suppipat, et al., Sulforaphane induces cell cycle arrest and apoptosis in acute lymphoblastic leukemia cells. PLoS One, 2012. 7(12): p. e51251. 66. A. Budhraja, et al., Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNK. Mol Cancer Ther, 2012. 11(1): p. 132-142. 67. XH. Kang, et al., Degradation of Mcl-1 through GSK-3β activation regulates apoptosis induced by bufalin in non-small cell lung cancer H1975 cells. Cell Physiol Biochem, 2017. 41(5): p. 2067-2076. 68. E. Casanelles, et al., NF-κB activation fails to protect cells to TNFα-induced apoptosis in the absence of Bcl-xL, but not Mcl-1, Bcl-2 or Bcl-w. Biochimica et Biophysica Acta, 2013. 1833(5): p. 1085-1095. 69. Y. Takada, et al., Identification of a p65 peptide that selectively inhibits NF-jB activation induced by various inflammatory stimuli and its role in down-regulation of NF-jBmediated gene expression and up-regulation of apoptosis. The Journal of Biological Chemistry, 2004. 279(15): p. 15096-15104. 70. G.F. Vile, et al., Activation of NF-jB in human skin fibroblasts by the oxidative stress generated by UVA radiation. Photochemistry Photobiology, 1995. 62(3): p. 463-468. 71. A Briones-Herrera, et al., New highlights on the health-improving effects of sulforaphane. Food&Function, 2018. 9(5): p. 2589-2606. 72. E. Heiss, et al., Nuclear factor-κB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. Journal of Biological Chemistry, 2001. 276(34): p. 32008-32015. 73. CJ. Xu, et al., Suppression of NF-κB and NF-κB-regulated gene expression by sulforaphane and PEITC through IκBα, IKK pathway in human prostate cancer PC-3 cells. Oncogene, 2005. 24(28): p. 4486-4495.
胃癌為全球癌症死因排名第四的致命惡性腫瘤;在台灣,胃癌為癌症致死率中排名第七,因此需要更有效的治療。蘿蔔硫素是一種富含在十字花科植物 (如花椰菜和花椰菜嫩芽) 中的異硫氰酸酯 (isothiocyanate),文獻顯示蘿蔔硫素在不同類型的癌症中具有抗癌、抗發炎和抗氧化作用。本實驗室過去研究指出,蘿蔔硫素透過抑制存活路徑JAK2-STAT3-BCL-2達到抗胃癌效果。有趣的是,我們在胃癌細胞株AGS和MKN45中發現抗凋亡蛋白MCL-1的表現量隨著蘿蔔硫素濃度增加而呈現依賴性上升。先前研究已知MCL-1的上調節在許多癌症中與抗藥性有關。因此,本研究中,我們探討在處理蘿蔔硫素的胃癌中,MCL-1之分子機制與生物意義。我們發現:若將MCL-1 knockdown,可提升蘿蔔硫素對胃癌細胞的細胞毒性,另外,使用UMI-77 (MCL-1抑制劑) 亦可得到相同結果,並明顯增加蘿蔔硫素對胃癌細胞凋亡的誘導,顯示蘿蔔硫素上調節MCL-1表現量引起細胞對自身之抗藥性。此外,我們發現蘿蔔硫素會誘導ERK活化,因此使用U0126 抑制ERK活化,而MCL-1表現量也明顯受到抑制,顯示蘿蔔硫素可能透過ERK活化使MCL-1蛋白穩定性顯著增加。另外一方面,胃癌細胞處理蘿蔔硫素會下調節IκBα表現,並促進p-p65表現,顯示蘿蔔硫素可活化NF-κB活性,而NF-κB為MCL-1之轉錄活化因子。我們使用IκBα super repressor以防止IκBα降解,顯示蘿蔔硫素透過活化NF-κB促使下游MCL-1轉錄活性增加。綜合上述,發現在胃腺癌細胞中,蘿蔔硫素透過活化ERK及NF-κB訊號路徑上調節MCL-1以產生對蘿蔔硫素自身的抗藥性。我們的研究結果為日後蘿蔔硫素合併MCL-1抑制劑做為優化胃癌治療效果之新策略提供理論基礎。

Gastric cancer is the forth most lethal malignancy at present with leading cause of cancer-related death worldwide. In Taiwan, gastric cancer is the seventh leading cause of cancer-related death, thus highlighting the demand for more effective therapeutics. Sulforaphane is a cruciferous vegetables-derived isothiocyanate such as broccoli and broccoli sprouts, which exhibits effective anti-cancer, anti-inflammatory and anti-oxidative actions in various cancers. Our previous research has indicated that the anti-gastric cancer effect of sulforaphane by suppressing the JAK2-STAT3-BCL-2 survival pathway. Interestingly, we found that the level of antiapoptotic MCL-1 was clearly upregulated in sulforaphane-treated gastric cells (AGS and MKN45) in a dose-dependent manner. However, upregulation of MCL-1 has been shown to be associated with drug resistance in various cancers. In this study, we investigated the molecular mechanism and biological significance of MCL-1 in sulforaphane-treated gastric cancer. The cytotoxicity of sulforaphane on gastric cancer cells can be enhanced by knockdown of MCL-1 in gastric cancer cells. Furthermore, the same results were observed with UMI-77 (MCL-1 inhibitor) treatment significantly increase the induction of apoptosis in sulforaphane-treated gastric cancer, suggesting that sulforaphane upregulates MCL-1 to cause its own resistance. In addition, we found that sulforaphane treatment induced ERK activation. We used U0126 to inhibit ERK activation while the expression of MCL-1 is also significantly suppressed, suggesting that sulforaphane treatment led to a marked increase in MCL-1 protein stability, most likely through inducing ERK activation. Furthermore, the level of IκBα was downregulated in sulforaphane-treated gastric cells, indicating that sulforaphane could activate the activity of NF-κB, the transcription factor of MCL-1. We used IκBα super-repressor, which prevents IκBα from degradation, show that sulforaphane treatment promotes the transcriptional activity of MCL-1 by NF-κB activation. In conclusion, upregulation of MCL-1 through ERK and NF-κB pathway are the causes of resistance to sulforaphane in gastric cancer. Our results therefore to provide a new strategy for a better treatment of gastric cancer using sulforaphane in combination with MCL-1 inhibition as a theoretical reference.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:生物醫學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105059013-1.pdf2.76 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.