Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97812
標題: 探討黑色素瘤與乾癬之治療暨其分子作用機轉
The Molecular Mechanisms and Therapeutic Effects of Potential Agents in Melanoma and Psoriasis
作者: 邱乾善
Chien-Shan Chiu
關鍵字: 黑色素細胞癌;內質網;轉移;MITF;厚朴酚;乾癬;芳香烴受體;高光譜GAIA;melanoma;ER stress;metastasis;MITF;Honokiol;psoriasis;aryl hydrocarbon receptor;GAIA spectroscopic instrument
引用: [1] J.E. Frangos, L.M. Duncan, A. Piris, R.M. Nazarian, M.C. Mihm, Jr., M.P. Hoang, B. Gleason, T.J. Flotte, H.R. Byers, R.L. Barnhill, A.B. Kimball, Increased diagnosis of thin superficial spreading melanomas: A 20-year study, J Am Acad Dermatol, 67 (2012) 387-394. [2] M. Freeman-Keller, J.S. Weber, Anti-programmed death receptor 1 immunotherapy in melanoma: rationale, evidence and clinical potential, Ther Adv Med Oncol, 7 (2015) 12-21. [3] M.Y. Bonner, I. Karlsson, M. Rodolfo, R.S. Arnold, E. Vergani, J.L. Arbiser, Honokiol bis-dichloroacetate (Honokiol DCA) demonstrates activity in vemurafenib-resistant melanoma in vivo, Oncotarget, 7 (2016) 12857-12868. [4] G. Kaushik, A. Venugopal, P. Ramamoorthy, D. Standing, D. Subramaniam, S. Umar, R.A. Jensen, S. Anant, J.M. Mammen, Honokiol inhibits melanoma stem cells by targeting notch signaling, Mol Carcinog, 54 (2015) 1710-1721. [5] S. Martin, H.K. Lamb, C. Brady, B. Lefkove, M.Y. Bonner, P. Thompson, P.E. Lovat, J.L. Arbiser, A.R. Hawkins, C.P. Redfern, Inducing apoptosis of cancer cells using small-molecule plant compounds that bind to GRP78, Br J Cancer, 109 (2013) 433-443. [6] R. Prasad, J.C. Kappes, S.K. Katiyar, Inhibition of NADPH oxidase 1 activity and blocking the binding of cytosolic and membrane-bound proteins by honokiol inhibit migratory potential of melanoma cells, Oncotarget, 7 (2016) 7899-7912. [7] D. Del Rio, A. Rodriguez-Mateos, J.P. Spencer, M. Tognolini, G. Borges, A. Crozier, Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases, Antioxid Redox Signal, 18 (2013) 1818-1892. [8] L.E. Fried, J.L. Arbiser, Honokiol, a multifunctional antiangiogenic and antitumor agent, Antioxid Redox Signal, 11 (2009) 1139-1148. [9] A. Mohan, S. Narayanan, S. Sethuraman, U.M. Krishnan, Combinations of plant polyphenols & anti-cancer molecules: a novel treatment strategy for cancer chemotherapy, Anticancer Agents Med Chem, 13 (2013) 281-295. [10] A. Niedzwiecki, M.W. Roomi, T. Kalinovsky, M. Rath, Anticancer Efficacy of Polyphenols and Their Combinations, Nutrients, 8 (2016). [11] S.H. Liu, W.J. Lee, D.W. Lai, S.M. Wu, C.Y. Liu, H.R. Tien, C.S. Chiu, Y.C. Peng, Y.J. Jan, T.H. Chao, H.C. Pan, M.L. Sheu, Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition, Mol Oncol, 9 (2015) 834-849. [12] C.K. Chiang, M.L. Sheu, K.Y. Hung, K.D. Wu, S.H. Liu, Honokiol, a small molecular weight natural product, alleviates experimental mesangial proliferative glomerulonephritis, Kidney Int, 70 (2006) 682-689. [13] C.K. Chiang, M.L. Sheu, Y.W. Lin, C.T. Wu, C.C. Yang, M.W. Chen, K.Y. Hung, K.D. Wu, S.H. Liu, Honokiol ameliorates renal fibrosis by inhibiting extracellular matrix and pro-inflammatory factors in vivo and in vitro, Br J Pharmacol, 163 (2011) 586-597. [14] S.H. Liu, C.C. Shen, Y.C. Yi, J.J. Tsai, C.C. Wang, J.T. Chueh, K.L. Lin, T.C. Lee, H.C. Pan, M.L. Sheu, Honokiol inhibits gastric tumourigenesis by activation of 15-lipoxygenase-1 and consequent inhibition of peroxisome proliferator-activated receptor-gamma and COX-2-dependent signals, Br J Pharmacol, 160 (2010) 1963-1972. [15] S.H. Liu, K.B. Wang, K.H. Lan, W.J. Lee, H.C. Pan, S.M. Wu, Y.C. Peng, Y.C. Chen, C.C. Shen, H.C. Cheng, K.K. Liao, M.L. Sheu, Calpain/SHP-1 interaction by honokiol dampening peritoneal dissemination of gastric cancer in nu/nu mice, PLoS One, 7 (2012) e43711. [16] H.C. Pan, D.W. Lai, K.H. Lan, C.C. Shen, S.M. Wu, C.S. Chiu, K.B. Wang, M.L. Sheu, Honokiol thwarts gastric tumor growth and peritoneal dissemination by inhibiting Tpl2 in an orthotopic model, Carcinogenesis, 34 (2013) 2568-2579. [17] M.L. Sheu, S.H. Liu, K.H. Lan, Honokiol induces calpain-mediated glucose-regulated protein-94 cleavage and apoptosis in human gastric cancer cells and reduces tumor growth, PLoS One, 2 (2007) e1096. [18] S. Sengupta, A. Nagalingam, N. Muniraj, M.Y. Bonner, P. Mistriotis, A. Afthinos, P. Kuppusamy, D. Lanoue, S. Cho, P. Korangath, M. Shriver, A. Begum, V.F. Merino, C.Y. Huang, J.L. Arbiser, W. Matsui, B. Gyorffy, K. Konstantopoulos, S. Sukumar, P.A. Marignani, N.K. Saxena, D. Sharma, Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3, Oncogene, 36 (2017) 5709-5721. [19] S.J. Gallagher, F. Rambow, M. Kumasaka, D. Champeval, A. Bellacosa, V. Delmas, L. Larue, Beta-catenin inhibits melanocyte migration but induces melanoma metastasis, Oncogene, 32 (2013) 2230-2238. [20] H.R. Widlund, M.A. Horstmann, E.R. Price, J. Cui, S.L. Lessnick, M. Wu, X. He, D.E. Fisher, Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor, J Cell Biol, 158 (2002) 1079-1087. [21] B. Bowerman, Cell signaling. Wnt moves beyond the canon, Science, 320 (2008) 327-328. [22] K.M. Cadigan, M.L. Waterman, TCF/LEFs and Wnt signaling in the nucleus, Cold Spring Harb Perspect Biol, 4 (2012). [23] T. Valenta, G. Hausmann, K. Basler, The many faces and functions of beta-catenin, Embo j, 31 (2012) 2714-2736. [24] M. Grabacka, W. Placha, K. Urbanska, P. Laidler, P.M. Plonka, K. Reiss, PPAR gamma regulates MITF and beta-catenin expression and promotes a differentiated phenotype in mouse melanoma S91, Pigment Cell Melanoma Res, 21 (2008) 388-396. [25] H. Nishitoh, CHOP is a multifunctional transcription factor in the ER stress response, J Biochem, 151 (2012) 217-219. [26] M. Horndasch, S. Lienkamp, E. Springer, A. Schmitt, H. Pavenstadt, G. Walz, J. Gloy, The C/EBP homologous protein CHOP (GADD153) is an inhibitor of Wnt/TCF signals, Oncogene, 25 (2006) 3397-3407. [27] D. Selimovic, M. Ahmad, A. El-Khattouti, M. Hannig, Y. Haikel, M. Hassan, Apoptosis-related protein-2 triggers melanoma cell death by a mechanism including both endoplasmic reticulum stress and mitochondrial dysregulation, Carcinogenesis, 32 (2011) 1268-1278. [28] J. Ferguson, M. Smith, I. Zudaire, C. Wellbrock, I. Arozarena, Glucose availability controls ATF4-mediated MITF suppression to drive melanoma cell growth, Oncotarget, 8 (2017) 32946-32959. [29] A. Ferretta, I. Maida, S. Guida, A. Azzariti, L. Porcelli, S. Tommasi, P. Zanna, T. Cocco, M. Guida, G. Guida, New insight into the role of metabolic reprogramming in melanoma cells harboring BRAF mutations, Biochim Biophys Acta, 1863 (2016) 2710-2718. [30] M.L. Hartman, M. Czyz, Pro-survival role of MITF in melanoma, J Invest Dermatol, 135 (2015) 352-358. [31] S. Shibahara, K. Takeda, K. Yasumoto, T. Udono, K. Watanabe, H. Saito, K. Takahashi, Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation, J Investig Dermatol Symp Proc, 6 (2001) 99-104. [32] Y. Xia, Y. Li, K.D. Westover, J. Sun, H. Chen, J. Zhang, D.E. Fisher, Inhibition of Cell Proliferation in an NRAS Mutant Melanoma Cell Line by Combining Sorafenib and alpha-Mangostin, PLoS One, 11 (2016) e0155217. [33] H. Saito, K. Yasumoto, K. Takeda, K. Takahashi, H. Yamamoto, S. Shibahara, Microphthalmia-associated transcription factor in the Wnt signaling pathway, Pigment Cell Res, 16 (2003) 261-265. [34] M.L. Hartman, M. Czyz, MITF in melanoma: mechanisms behind its expression and activity, Cell Mol Life Sci, 72 (2015) 1249-1260. [35] M. Verras, I. Papandreou, A.L. Lim, N.C. Denko, Tumor hypoxia blocks Wnt processing and secretion through the induction of endoplasmic reticulum stress, Mol Cell Biol, 28 (2008) 7212-7224. [36] S. Oyadomari, M. Mori, Roles of CHOP/GADD153 in endoplasmic reticulum stress, Cell Death Differ, 11 (2004) 381-389. [37] C. Gao, G. Xiao, J. Hu, Regulation of Wnt/beta-catenin signaling by posttranslational modifications, Cell Biosci, 4 (2014) 13. [38] A.P. Trotta, J.D. Gelles, M.N. Serasinghe, P. Loi, J.L. Arbiser, J.E. Chipuk, Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition, J Biol Chem, 292 (2017) 11727-11739. [39] R. Busca, R. Ballotti, Cyclic AMP a key messenger in the regulation of skin pigmentation, Pigment Cell Res, 13 (2000) 60-69. [40] Y. Cheli, S. Giuliano, N. Fenouille, M. Allegra, V. Hofman, P. Hofman, P. Bahadoran, J.P. Lacour, S. Tartare-Deckert, C. Bertolotto, R. Ballotti, Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells, Oncogene, 31 (2012) 2461-2470. [41] H. Tsao, L. Chin, L.A. Garraway, D.E. Fisher, Melanoma: from mutations to medicine, Genes Dev, 26 (2012) 1131-1155. [42] F. Laugier, J. Delyon, J. Andre, A. Bensussan, N. Dumaz, Hypoxia and MITF regulate KIT oncogenic properties in melanocytes, Oncogene, 35 (2016) 5070-5077. [43] J.C. Cronin, J. Wunderlich, S.K. Loftus, T.D. Prickett, X. Wei, K. Ridd, S. Vemula, A.S. Burrell, N.S. Agrawal, J.C. Lin, C.E. Banister, P. Buckhaults, S.A. Rosenberg, B.C. Bastian, W.J. Pavan, Y. Samuels, Frequent mutations in the MITF pathway in melanoma, Pigment Cell Melanoma Res, 22 (2009) 435-444. [44] J. Du, H.R. Widlund, M.A. Horstmann, S. Ramaswamy, K. Ross, W.E. Huber, E.K. Nishimura, T.R. Golub, D.E. Fisher, Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF, Cancer Cell, 6 (2004) 565-576. [45] J.J. Hsiao, D.E. Fisher, The roles of microphthalmia-associated transcription factor and pigmentation in melanoma, Arch Biochem Biophys, 563 (2014) 28-34. [46] Y. Gu, J. Rosenblatt, D.O. Morgan, Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15, Embo j, 11 (1992) 3995-4005. [47] I.M. Michalek, B. Loring, S.M. John, A systematic review of worldwide epidemiology of psoriasis, Journal of the European Academy of Dermatology and Venereology, 31 (2017) 205-212. [48] E.J. Horn, K.M. Fox, V. Patel, C.F. Chiou, F. Dann, M. Lebwohl, Association of patient-reported psoriasis severity with income and employment, Journal of The American Academy of Dermatology, 57 (2007) 963-971. [49] J.M. Gelfand, S.R. Feldman, R.S. Stern, J. Thomas, T. Rolstad, D.J. Margolis, Determinants of quality of life in patients with psoriasis: a study from the US population, Journal of The American Academy of Dermatology, 51 (2004) 704-708. [50] F.O. Nestle, D.H. Kaplan, J. Barker, Psoriasis, N Engl J Med, 361 (2009) 496-509. [51] H.B. Schonthaler, J. Guinea-Viniegra, E.F. Wagner, Targeting inflammation by modulating the Jun/AP-1 pathway, Ann Rheum Dis, 70 Suppl 1 (2011) i109-112. [52] M.A. Lowes, C.B. Russell, D.A. Martin, J.E. Towne, J.G. Krueger, The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses, Trends Immunol, 34 (2013) 174-181. [53] P.M. Cochez, C. Michiels, E. Hendrickx, A.B. Van Belle, M.M. Lemaire, N. Dauguet, G. Warnier, M. de Heusch, D. Togbe, B. Ryffel, P.G. Coulie, J.C. Renauld, L. Dumoutier, AhR modulates the IL-22-producing cell proliferation/recruitment in imiquimod-induced psoriasis mouse model, European Journal Of Immunology, 46 (2016) 1449-1459. [54] M.A. Lowes, C.B. Russell, D.A. Martin, J.E. Towne, J.G. Krueger, The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses, Trends Immunology, 34 (2013) 174-181. [55] P. Di Meglio, J.H. Duarte, H. Ahlfors, N.D. Owens, Y. Li, F. Villanova, I. Tosi, K. Hirota, F.O. Nestle, U. Mrowietz, M.J. Gilchrist, B. Stockinger, Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions, Immunity, 40 (2014) 989-1001. [56] L.P. Nguyen, C.A. Bradfield, The search for endogenous activators of the aryl hydrocarbon receptor, Chemical Research in Toxicology, 21 (2008) 102-116. [57] E.A. Kiss, C. Vonarbourg, S. Kopfmann, E. Hobeika, D. Finke, C. Esser, A. Diefenbach, Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles, Science, 334 (2011) 1561-1565. [58] Y. Li, S. Innocentin, D.R. Withers, N.A. Roberts, A.R. Gallagher, E.F. Grigorieva, C. Wilhelm, M. Veldhoen, Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation, Cell, 147 (2011) 629-640. [59] J. Qiu, J.J. Heller, X. Guo, Z.M. Chen, K. Fish, Y.X. Fu, L. Zhou, The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells, Immunity, 36 (2012) 92-104. [60] J.S. Lee, M. Cella, K.G. McDonald, C. Garlanda, G.D. Kennedy, M. Nukaya, A. Mantovani, R. Kopan, C.A. Bradfield, R.D. Newberry, M. Colonna, AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch, Nature Immunology, 13 (2011) 144-151. [61] P. Pinto, M. Dougados, Leflunomide in clinical practice, Acta Reumatologica Portuguesa, 31 (2006) 215-224. [62] E.F. O'Donnell, P.R. Kopparapu, D.C. Koch, H.S. Jang, J.L. Phillips, R.L. Tanguay, N.I. Kerkvliet, S.K. Kolluri, The aryl hydrocarbon receptor mediates leflunomide-induced growth inhibition of melanoma cells, PLoS One, 7 (2012) e40926. [63] U.H. Jin, S.O. Lee, C. Pfent, S. Safe, The aryl hydrocarbon receptor ligand omeprazole inhibits breast cancer cell invasion and metastasis, BMC Cancer, 14 (2014) 498. [64] A. Schneider, H. Feussner, Chapter 5 Diagnostic Procedures, Biomedical Engineering in Gastrointestinal Surgery2017, pp. 87-220. [65] H. Liang, Advances in multispectral and hyperspectral imaging for archaeology and art conservation, Applied Physics A, 106 (2012) 309-323. [66] S.V. Panasyuk, S. Yang, D.V. Faller, D. Ngo, R.A. Lew, J.E. Freeman, A.E. Rogers, Medical hyperspectral imaging to facilitate residual tumor identification during surgery, Cancer Biology & Therapy, 6 (2007) 439-446. [67] G. Lu, B. Fei, Medical hyperspectral imaging: a review, Journal of Biomedical Optics, 19 (2014) 10901. [68] I. Diebele, I. Kuzmina, A. Lihachev, J. Kapostinsh, A. Derjabo, L. Valeine, J. Spigulis, Clinical evaluation of melanomas and common nevi by spectral imaging, Biomed Opt Express, 3 (2012) 467-472. [69] J.L. Rapanan, A.S. Pascual, C.K. Uppalapati, K.E. Cooper, K.J. Leyva, E.E. Hull, Zebrafish keratocyte explants to study collective cell migration and reepithelialization in cutaneous wound healing, Journal of Visualized Experiments, (2015). [70] R.H. Wilson, K.P. Nadeau, F.B. Jaworski, B.J. Tromberg, A.J. Durkin, Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization, Journal of Biomedical Optics, 20 (2015) 030901. [71] G.K. Reddy, C.S. Enwemeka, A simplified method for the analysis of hydroxyproline in biological tissues, Clin Biochem, 29 (1996) 225-229. [72] J.E. Gudjonsson, A. Johnston, M. Dyson, H. Valdimarsson, J.T. Elder, Mouse models of psoriasis, J Invest Dermatol, 127 (2007) 1292-1308. [73] W.R. Swindell, A. Johnston, S. Carbajal, G. Han, C. Wohn, J. Lu, X. Xing, R.P. Nair, J.J. Voorhees, J.T. Elder, X.J. Wang, S. Sano, E.P. Prens, J. DiGiovanni, M.R. Pittelkow, N.L. Ward, J.E. Gudjonsson, Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis, PLoS One, 6 (2011) e18266. [74] L.C. Cancio, A.I. Batchinsky, J.R. Mansfield, S. Panasyuk, K. Hetz, D. Martini, B.S. Jordan, B. Tracey, J.E. Freeman, Hyperspectral imaging: a new approach to the diagnosis of hemorrhagic shock, J Trauma, 60 (2006) 1087-1095. [75] K.J. Zuzak, M.D. Schaeberle, M.T. Gladwin, R.O. Cannon, 3rd, I.W. Levin, Noninvasive determination of spatially resolved and time-resolved tissue perfusion in humans during nitric oxide inhibition and inhalation by use of a visible-reflectance hyperspectral imaging technique, Circulation, 104 (2001) 2905-2910. [76] R.L. Greenman, S. Panasyuk, X. Wang, T.E. Lyons, T. Dinh, L. Longoria, J.M. Giurini, J. Freeman, L. Khaodhiar, A. Veves, Early changes in the skin microcirculation and muscle metabolism of the diabetic foot, Lancet, 366 (2005) 1711-1717. [77] R. Gillies, J.E. Freeman, L.C. Cancio, D. Brand, M. Hopmeier, J.R. Mansfield, Systemic effects of shock and resuscitation monitored by visible hyperspectral imaging, Diabetes Technol Ther, 5 (2003) 847-855. [78] M. Ünal, A. Küçük, G. Ürün Ünal, Þ. Balevi, H. Tol, C. Aykol, M. Uyar, Mean platelet volume, neutrophil to lyphocyte ratio and platelet to lymphocyte ratio in psoriasis, TURKDERM - Archieves of The Turkish Dermatology and Venerology, 49 (2015) 112-116. [79] A. Kaser, G. Brandacher, W. Steurer, S. Kaser, F.A. Offner, H. Zoller, I. Theurl, W. Widder, C. Molnar, O. Ludwiczek, M.B. Atkins, J.W. Mier, H. Tilg, Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis, Blood, 98 (2001) 2720-2725. [80] L. Chandrashekar, M. Rajappa, G. Revathy, I. Sundar, M. Munisamy, P.H. Ananthanarayanan, D.M. Thappa, D. Basu, Is enhanced platelet activation the missing link leading to increased cardiovascular risk in psoriasis?, Clin Chim Acta, 446 (2015) 181-185. [81] C.J. Dixon, W.B. Bowler, A. Littlewood-Evans, J.P. Dillon, G. Bilbe, G.R. Sharpe, J.A. Gallagher, Regulation of epidermal homeostasis through P2Y2 receptors, British Journal of Pharmacology, 127 (1999) 1680-1686. [82] K. Inoue, J. Hosoi, M. Denda, Extracellular ATP has stimulatory effects on the expression and release of IL-6 via purinergic receptors in normal human epidermal keratinocytes, J Invest Dermatol, 127 (2007) 362-371. [83] S. Pastore, F. Mascia, S. Gulinelli, S. Forchap, C. Dattilo, E. Adinolfi, G. Girolomoni, F. Di Virgilio, D. Ferrari, Stimulation of purinergic receptors modulates chemokine expression in human keratinocytes, J Invest Dermatol, 127 (2007) 660-667. [84] F.C. Weber, P.R. Esser, T. Muller, J. Ganesan, P. Pellegatti, M.M. Simon, R. Zeiser, M. Idzko, T. Jakob, S.F. Martin, Lack of the purinergic receptor P2X(7) results in resistance to contact hypersensitivity, J Exp Med, 207 (2010) 2609-2619. [85] A.M. Holzer, R.D. Granstein, Role of extracellular adenosine triphosphate in human skin, J Cutan Med Surg, 8 (2004) 90-96. [86] M.E. Killeen, L. Ferris, E.A. Kupetsky, L. Falo, Jr., A.R. Mathers, Signaling through purinergic receptors for ATP induces human cutaneous innate and adaptive Th17 responses: implications in the pathogenesis of psoriasis, J Immunol, 190 (2013) 4324-4336. [87] B. Srinivasan, A.R. Kolli, M.B. Esch, H.E. Abaci, M.L. Shuler, J.J. Hickman, TEER measurement techniques for in vitro barrier model systems, J Lab Autom, 20 (2015) 107-126. [88] S. Bek, R. Kemler, Protein kinase CKII regulates the interaction of beta-catenin with alpha-catenin and its protein stability, Journal of Cell Science, 115 (2002) 4743-4753. [89] H. Lickert, A. Bauer, R. Kemler, J. Stappert, Casein kinase II phosphorylation of E-cadherin increases E-cadherin/beta-catenin interaction and strengthens cell-cell adhesion, Journal of Biological Chemistry, 275 (2000) 5090-5095. [90] M. Serres, O. Filhol, H. Lickert, C. Grangeasse, E.M. Chambaz, J. Stappert, C. Vincent, D. Schmitt, The disruption of adherens junctions is associated with a decrease of E-cadherin phosphorylation by protein kinase CK2, Exp Cell Res, 257 (2000) 255-264. [91] K.D. Sumigray, T. Lechler, Cell adhesion in epidermal development and barrier formation, Current Topics in Developmental Biology, 112 (2015) 383-414. [92] S. Borodzicz, L. Rudnicka, D. Mirowska-Guzel, A. Cudnoch-Jedrzejewska, The role of epidermal sphingolipids in dermatologic diseases, Lipids Health Dis, 15 (2016) 13. [93] W.M. Holleran, Y. Takagi, Y. Uchida, Epidermal sphingolipids: metabolism, function, and roles in skin disorders, FEBS Lett, 580 (2006) 5456-5466. [94] M.H. Meckfessel, S. Brandt, The structure, function, and importance of ceramides in skin and their use as therapeutic agents in skin-care products, J Am Acad Dermatol, 71 (2014) 177-184. [95] K. Nakajima, M. Terao, M. Takaishi, S. Kataoka, N. Goto-Inoue, M. Setou, K. Horie, F. Sakamoto, M. Ito, H. Azukizawa, S. Kitaba, H. Murota, S. Itami, I. Katayama, J. Takeda, S. Sano, Barrier abnormality due to ceramide deficiency leads to psoriasiform inflammation in a mouse model, J Invest Dermatol, 133 (2013) 2555-2565. [96] Y. Lee, Y.J. Je, S.S. Lee, Z.J. Li, D.K. Choi, Y.B. Kwon, K.C. Sohn, M. Im, Y.J. Seo, J.H. Lee, Changes in transepidermal water loss and skin hydration according to expression of aquaporin-3 in psoriasis, Ann Dermatol, 24 (2012) 168-174. [97] C.L. Emson, S. Fitzmaurice, G. Lindwall, K.W. Li, M.K. Hellerstein, H.I. Maibach, W. Liao, S.M. Turner, A pilot study demonstrating a non-invasive method for the measurement of protein turnover in skin disorders: application to psoriasis, Clinical and Translational Medicine, 2 (2013) 12. [98] T. Nakashima, M. Jinnin, K. Yamane, N. Honda, I. Kajihara, T. Makino, S. Masuguchi, S. Fukushima, Y. Okamoto, M. Hasegawa, M. Fujimoto, H. Ihn, Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts, J Immunol, 188 (2012) 3573-3583. [99] B.J. Park, J.Y. Shim, H.R. Lee, D.H. Jung, J.H. Lee, Y.J. Lee, The relationship of platelet count, mean platelet volume with metabolic syndrome according to the criteria of the American Association of Clinical Endocrinologists: a focus on gender differences, Platelets, 23 (2012) 45-50. [100] G. Ed Rainger, M. Chimen, M.J. Harrison, C.M. Yates, P. Harrison, S.P. Watson, M. Lordkipanidze, G.B. Nash, The role of platelets in the recruitment of leukocytes during vascular disease, Platelets, 26 (2015) 507-520. [101] M. Gawaz, H. Langer, A.E. May, Platelets in inflammation and atherogenesis, J Clin Invest, 115 (2005) 3378-3384. [102] M. Unal, Platelet mass index is increased in psoriasis. A possible link between psoriasis and atherosclerosis, Archives of Medical Science - Atherosclerotic Diseases, 1 (2016) e145-e149. [103] S. Lindsey, E.T. Papoutsakis, The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization, Br J Haematol, 152 (2011) 469-484. [104] M.M. Faas, T. Saez, P. de Vos, Extracellular ATP and adenosine: The Yin and Yang in immune responses?, Mol Aspects Med, 55 (2017) 9-19. [105] F. Alessandrini, S. Pfister, E. Kremmer, J.K. Gerber, J. Ring, H. Behrendt, Alterations of glucosylceramide-beta-glucosidase levels in the skin of patients with psoriasis vulgaris, Journal of Investigative Dermatology, 123 (2004) 1030-1036. [106] S. Motta, M. Monti, S. Sesana, L. Mellesi, R. Ghidoni, R. Caputo, Abnormality of water barrier function in psoriasis. Role of ceramide fractions, Arch Dermatol, 130 (1994) 452-456. [107] S. Aijaz, M.S. Balda, K. Matter, Tight junctions: molecular architecture and function, Int Rev Cytol, 248 (2006) 261-298. [108] E.E. Schneeberger, R.D. Lynch, The tight junction: a multifunctional complex, Am J Physiol Cell Physiol, 286 (2004) C1213-1228. [109] J.M. Brandner, S. Kief, E. Wladykowski, P. Houdek, I. Moll, Tight junction proteins in the skin, Skin Pharmacol Physiol, 19 (2006) 71-77. [110] K. Pummi, M. Malminen, H. Aho, S.L. Karvonen, J. Peltonen, S. Peltonen, Epidermal tight junctions: ZO-1 and occludin are expressed in mature, developing, and affected skin and in vitro differentiating keratinocytes, J Invest Dermatol, 117 (2001) 1050-1058. [111] Y. Yoshida, K. Morita, A. Mizoguchi, C. Ide, Y. Miyachi, Altered expression of occludin and tight junction formation in psoriasis, Arch Dermatol Res, 293 (2001) 239-244. [112] S. Peltonen, J. Riehokainen, K. Pummi, J. Peltonen, Tight junction components occludin, ZO-1, and claudin-1, -4 and -5 in active and healing psoriasis, Br J Dermatol, 156 (2007) 466-472.
摘要: 
黑色素細胞癌是所有皮膚癌中最惡性、最容易轉移,且致死率最高的皮膚癌類型。全球高度轉移性黑色素細胞癌的發生率越來越高,治療策略如那些聚集於高侵略性黑色素癌細胞下游β-catenin / MITF訊號傳遞路徑軸線的治療策略是迫切需要的。治療標的針對內質網壓力 (ER stress) 已知可以促進癌細胞死亡並抑制轉移性腫瘤的上皮細胞間質轉化(EMT)。本研究目的在於確認厚朴酚是否可以促進內質網壓力有關的細胞凋亡及調節轉移性黑色素細胞癌。使用高轉移性黑色素細胞癌異種移植小鼠之腹膜轉移模型及電腦斷層掃描影像來評估厚朴酚的治療效果。內質網壓力標記物Calpain-10,是一種新的蛋白水解切割酶。利用基因靜默(gene silencing) 技術抑制CHOP / GADD153所調節的細胞凋亡作用以確定β-catenin / MITF訊號傳遞路徑軸線在黑素癌細胞中所扮演的角色。研究結果發現厚朴酚經由活化內質網壓力及抑制上皮細胞間質轉化可有效地降低黑色素細胞癌腹膜腔轉移和器官轉移。利用基因減弱技術抑制Calpain-10基因或CHOP / GADD153基因的表現可抑制由厚朴酚誘發之訊號傳遞路徑軸線β-catenin / MITF蛋白分解並抑制ERSE (ER stress response element) 或TCF / LEF (T cell-specific transcription factor/Lymphoid enhancer-binding factor) 螢光素酶活性和β-catenin蛋白激酶活性之相關生物效應。這些研究發現顯示了厚朴酚可以經由調節Calpain-10和CHOP / GADD153而抑制β-catenin / MITF訊號傳遞路徑軸線,進而顯著地阻止高度轉移性黑色素細胞癌的進展。
乾癬是一種自體免疫慢性發炎的皮膚疾病,影響約2%-3% 的人口。對於患者造成重大的心理負擔以及影響其生活品質的程度,不亞於其他重大慢性疾病,如關節炎、糖尿病、高血壓等。不少患者從青壯年時就得開始面對乾癬,在無治癒的希望下,許多患者合併有憂鬱、焦慮、酒精濫用的現象,甚至有些患者有自殺念頭。最近研究發現aryl hydrocarbon receptor (AhR) 在乾癬的致病機轉中扮演很重要的角色,然而是否AhR agonists對乾癬有治療效果仍然是未知的,所以我們將已知的AhR agonists: Omeprazole (OMP)及Leflunomide (LEU)用於由Imiquimod (IMQ)所誘導類似乾癬皮膚發炎之小鼠模式來評估AhR agonists是否有療效,動物實驗結果顯示OMP 及LEU 可藉由減少表皮免疫細胞的浸潤及白细胞介素-17的表現,進而減少由IMQ所誘導類似乾癬之皮膚發炎。此外,OMP及LEU可以增強表皮細胞間的細胞緊密連接 (cell tight junction) 及細胞粘著(cell-cell adhesion),進而增強皮膚屏障(skin barrier) 之功能。此外,高光譜影像 (Hyperspectral imaging) 已經被廣泛的應用於各種民生與軍事的用途,包括農藥殘留檢驗、食品安全檢驗、翡翠寶石鑑定、藝術品鑑定、地表的監測、生態環境的變遷、地理資訊的蒐集等應用,最近已有硏究將高光譜影像應用於醫學領域,包括評估腫瘤的良性與惡性及評估缺血性組織的血液灌注狀況。所以我們將高光譜影像應用於評估乾癬的嚴重度,動物實驗結果顯示高光譜影像之水及膠原蛋白的訊號在IMQ所誘導類似乾癬發炎之老鼠皮膚會明顯減少,而在正常老鼠的皮膚則沒有變化。我們的硏究結果顯示高光譜影像是快速、準確且可信任的技術,可應用於臨床評估乾癬的嚴重度。目前治療乾癬傳統用藥包括acitretin、methotrexate及cyclosporine,然而這些藥物有肝毒性、腎毒性或骨髓抑制等副作用。目前已有生物製劑用於治療中、重度乾癬,雖然生物製劑的副作用比傳統乾癬用藥少,但是生物製劑價格比起傳統用藥昂貴許多,我們的硏究顯示OMP及LEU確實可明顯減少由IMQ所誘導類似乾癬之皮膚發炎,而OMP及LEU的價格低且無明顯副作用。我們深信該研究將打開更多的視野,暸解AhR agonists減緩由IMQ誘導類似乾癬皮膚發炎之機轉 ,進而可將Omeprazole及Leflunomide應用於臨床治療乾癬。

There is increasing global incidence of highly metastatic melanoma and therapeutic strategies like those focusing on the downstream beta-catenin/MITF axis of invading melanoma cells are urgently needed. Targeting endoplasmic reticulum (ER) stress can promote cancer cell death and inhibit epithelial mesenchymal transition (EMT) in metastatic tumors. However, whether Honokiol could promote ER stress-dependent apoptosis and regulate metastatic melanoma is still unkown. We therefore used the highly metastatic melanoma xenograft mouse model and computed tomography imaging to assess the therapeutic efficacy of Honokiol for peritoneal metastasis. The ER stress marker, Calpain-10, delineated a novel proteolytic cleavage enzyme, while CHOP/GADD153-regulated apoptosis was used for gene silencing to determine the role of the β-catenin/MITF axis in melanoma cells. Our results showed that Honokiol effectively decreased peritoneal dissemination and organ metastasis via ER stress activation and EMT marker inhibition. Knockdown Calpain-10 or CHOP/GADD153 blocked all of the biological effects in Honokiol-induced β-catenin/MITF cleavage, ERSE or TCF/LEF luciferase activity, and β-catenin kinase activity. These experimental outcomes suggest that Honokiol can significantly thwart the progression of highly metastatic melanoma using the β-catenin/MITF axis via prompt Calpain-10 and CHOP/GADD153 regulated cascades.
We also explored the molecular mechanisms and therapeutic effects of potential agents in psoriasis. Psoriasis is a chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation and differentiation and by and influx of inflammatory cell that is associated with multiple coexisting conditions. The aryl hydrocarbon receptor (AhR) has become increasingly recognized for its role in the differentiation and activity of immune cell subsets; however, its role in regulating the activity of immune cells by pharmacological effect of a receptor agonist has not been described. Here we first establish and present of short-wave infrared (SWIR, defined here as ∼1000 to 2000 nm) spectroscopy and imaging techniques for biological tissue optical property characterization. We conducted and identify a novel spectroscopic instrument (GAIA) application of AhR-mediated signaling in imiquimod (IMQ)-induced psoriatic inflammation, a mouse model that shares feature with the human disease. We found that GAIA precisely evaluated psoriatic inflammation and consistent with pathological histology, which specially survey the water and collagen signals of tissue constituents but not lipids. Simultaneously, we also show that deficiency of AhR expression by knockout (AhRKO) mice is induced and aggravated in spectroscopic image, immune cells and cytokine IL-17. In contrast, activation of AhR with an AhR agonists, Leflunomide (LEU) and Omeprazole (OMP) efficiently attenuates immune activity and IL-17 of production. In vitro study, primary goldfish keratocytes (PFK) demonstrated that AhR is essential for keratinocyte barrier function by trans epithelial electrical resistance (TEER) measurement. Our studies introduce AhR as another regulator of immune cell activity in vivo, regulation of inflammatory responses and skin barrier function. We open the possibility for novel therapeutic strategies in chronic inflammatory disorders and identify AhR agonist may be a potential therapeutic target for psoriasis.
URI: http://hdl.handle.net/11455/97812
Rights: 同意授權瀏覽/列印電子全文服務,2018-12-28起公開。
Appears in Collections:生物醫學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-8100059004-1.pdf6.39 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.