Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97819
標題: 用作診斷治療劑之咔唑衍生物及其奈米化現象
Theranostic application and nano-construction of carbazole derivative
作者: 楊孟璇
Meng-Hsuan Yang
關鍵字: 雙重毒性功效;聚集誘導螢光;史托伯法;柵欄效應;Aggregation-induced emission;Dual-toxic efficacy molecule;Stöber method;Surface modification
引用: 1. D.E. Dolmans, D. Fukumura, R.K. Jain, Nat. Rev. Cancer. 2003, 3, 380–387. 2. A.P. Castano, P. Mroz, M.R. Hamblin, Nat. Rev. Cancer. 2006, 6, 535–545. 3. R. L. Lipson, E. J. Baldes, Arch. Dermatol., 1960, 82, 508-516. 4. Y. Zheng, G. Yin, V. Le, A. Zhang, S. Chen, X. Liang, J. Liu, Int. J. Biol. Sci., 2016, 12, 120–132. 5. J. Moan, K. Berg, E. Kvam, A. Western, Z. Malik, A. Rück, H. Schneckenburger. Wiley and Sons, 2007, 23 , 95–111. 6. K. Berg, J. Moan, Photochem. Photobiol., 1997, 65, 403–409. 7. K. Berg, J. Moan, Int. J.Cancer, 1994, 59, 814–822. 8. Z. Malik, I. Amit, C. Rothmann, Photochem. Photobiol., 1997, 65, 389–396 9. A. Ruck, T. Kollner, A. Dietrich, W. Strauss, H. Schneckenburger, J. Photochem. Photobiol. B. Biol., 1992, 12, 403–412. 10. B. Noodt, K. Berg, T. Stokke, Q. Peng, J. Nesland, J. Br., Cancer, 1999, 79, 72–81. 11. Tweeny R. Kau, Jeffrey C. Way, Pamela A. Silver, Nat. Rev. Cancer, 2004, 4, 106-117 12. J.Moan, K. Berg, E. Kvam, A. Western, Z. Malik, A. Ruck, H. Schneckenburger, Ciba Found. Symp., 1989, 146, 95-107. 13. J.Moan, K. Berg, J. C. Bommer, A. Western, Photochem. Photobiol., 1992, 56, 171-175. 14. Horn D.; Rieger J., Angew. Chem. Int. Ed. Engl., 2001, 40, 4330-4361. 15. Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E., Zaccheroni N., Angew. Chem. Int. Ed., 2011, 50: 4056-4066. 16. An B.K.; Kwon S.K.; Jung S.D. Park S. Y., J. Am. Chem. Soc. 2002, 124, 14410-14415. 17. J. C. González, R. M. Paniago, W. N. Rodrigues, A. Malachias, M. V. B. Moreira, A. G. de Oliveira, I. Mazzaro, C. Cusatis, T. H. Metzger, J. Peisl. Appl. Phys. Lett., 2001, 78, 1056-1061. 18. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang. Chem. Comm., 2001, 1740-1741. 19. Rongrong Hu, Nelson L. C. Leung, Ben Zhong Tang, Chem. Soc. Rev, 2014, 43, 4494-4562. 20. M. M. de Souza, G. Rumbles, I. R. Gould, H. Amer, I. D. W. Samuel, S. C. Moratti, and A. B. Holmes, Synth. Met., 2000, 111–112, 539–543. 21. I. Fischer, K. P. Milroy, Y. L. Dorland, A. P. H. J. Schenning and L. Brunsveld, Chem. Eur. J., 2013, 19, 16646 –16650. 22. K. Mohit, and G. J. Subi, Nanoscale, 2011, 3, 2130–2133. 23. S. Y. Su, H. H. Linb, and C. C. Chang, J. Mater. Chem., 2010, 20, 8653–8658. 24. M. C. Hsieh, C. H. Chien, C. C. Chang ,T. C. Chang, J. Mater. Chem., 2013, 1, 2350-2357. 25. Y. T. Tung, C. C. Chang, Y.L. Lin, S. L. Hsieh, and G. J. Wang, Biosens. Bioelectron., 2015, 0956-5663. 26. M. Montalti , L. Prodi , E. Rampazzo and N. Zaccheroni Chem. Soc. Rev., 2014, 43, 4243-4268 27. R. Kumar, I. Roy, T. Y. Ohulchanskyy, L. N. Goswami, A. C. Bonoiu, E. J. Bergey, K. M. Tramposch, A. Maitra and P. N. Prasad, ACS Nano, 2008, 2, 449–456. 28. S. Kaur, G. Venktaraman, M. Jain, S. Senapati, P. K. Garg and S. K. Batra, Cancer Lett., 2012, 315, 97–111. 29. V R. María, ISRN Materials Science, 2012, 2012, 1. 30. W. Arap, R. Pasqualini, M. Montalti, L. Petrizza, L. Prodi,E. Rampazzo, N. Zaccheroni and S. Marchio, Curr. Med.Chem., 2013, 20, 2195–2211. 31. J. H. Ryu, H. Koo, I.-C. Sun, S. H. Yuk, K. Choi, K. Kim and I. C. Kwon, Adv. Drug Delivery Rev., 2012, 64, 1447–1458. 32. B. Cohen, C. Martin, S. K. Iyer, U. Wiesner and A. Douhal, Chem. Mater., 2012, 24, 361-372. 33. L. L. Hench and J. K. West, Chem. Rev., 1990, 90, 33–72. 34. W. Stöber, A. Fink and E. Bohn, J Colloid. Interface Sci., 1968, 26, 62-69. 35. S. Zanarini, E. Rampazzo, L. D. Ciana, M. Marcaccio,E. Marzocchi, M. Montalti, F. Paolucci and L. Prodi, J. Am. Chem. Soc., 2009, 131, 2260–2267. 36. R. P. Bagwe, C. Yang, L. R. Hilliard and W. Tan, Langmuir, 2004, 20, 8336–8342. 37. S. Zanarini, E. Rampazzo, S. Bonacchi, R. Juris,M. Marcaccio, M. Montalti, F. Paolucci and L. Prodi, J. Am. Chem. Soc., 2009, 131, 14208–14209. 38. S. Toné, K. Sugimoto, K. Tanda, T. Suda, K. Uehira, H. Kanouchi, K. Samejima, Y. Minatogawa, W. C. Earnshaw, Experimental Cell Research, 2007, 313, 3635-3644 39. Y. C. Chiang, Z. L. Lai, C. M. Chen, C. C. Chang, B. Liu, J. Mater. Chem. B, 2018, 6, 2869-2876. 40. E.J Dennis, G.J. Dolmans, D. Fukumura, K. R. Jain, Nat. Rev., 2003, 3, 380-387 41. R. Ackroyd, C. Kelty, N. Brown, M. Reed, Photochem. Photobiol., 2001, 74, 656–666 42. D. A. Jans, C. Y. Xiao, Mark H.C. Lam, Bioassays, 2000, 22, 532-544.
摘要: 
在本論文中,我們開發了一種具有化學-光動力雙重療法功效的分子。首先我們利用本實驗室所合成的水溶性聚集誘導螢光(AIE)螢光團,BMVC-12P-4VP,在光照射下產生特定活性氧(ROS)並進行type II光動力療法(PDT)。此外,該化合物可以特異性地表現於線粒體上並引起線粒體功能障礙,然後對癌細胞而非正常細胞產生有效的細胞毒性。我們得出結論,該化合物是一種潛在的雙毒性功效分子,因為它對癌細胞具有選擇性的暗細胞毒性和光致損傷效率。
此外,我們開發了一個平台,基於BMVC-12P-4VP的AIE特性通過史托伯 (Stöber) 方法構建不同性質的螢光奈米粒。通過不同的奈米粒製造方法,可以獲得不同螢光顏色的奈米粒。透過進一步對奈米粒的表面進行改質,並且初步的證明了所製備出的奈米粒在細胞影像中的應用。研究中我們透過AIE與柵欄效應 (Cage effect) 來探討分子的內電荷轉移 (Twisted Intramolecular Change Transfer, TICT) 以解釋上述的現象。

In this thesis, we developed a molecule possessing the chemo-photodynamic dual therapy functions. A water-soluble aggregation-induced emission (AIE) fluorophore, BMVC-12P-4VP, was designed and synthesized for generating particular reactive oxygen species (ROS) to undergo type II photodynamic therapy (PDT) programme under irradiation. Furthermore, this compound can specifically localize in mitochondria and cause mitochondrial dysfunction and then potent cytotoxicity to cancer cells but not normal cells. We concluded that this compound is a potentially dual-toxic efficacy molecule because it exhibits selective dark cytotoxicity and photodamage efficiency on cancer cells. Additionally, we developed a platform to construct strong luminescent nanoparticles with tunable emission colors based on a AIE property of BMVC-12P-4VP by Stöber method. Through different nanoparticle fabrication approaches, fluorescent nanoparticles with different emission colors were obtained. It was developed that AIE primarily controls the emission intensity while twisted intramolecular change transfer (TICT) manipulates more in the emission wavelengths. Applications of the as-prepared nanoparticles in cell imaging were preliminarily demonstrated by further surface modification of nanoparticles.
URI: http://hdl.handle.net/11455/97819
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-21起公開。
Appears in Collections:生醫工程研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105068002-1.pdf7.45 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.