Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97828
標題: 自律神經與含水量對腎臟病人健康狀態影響之探索
Exploring the Impact of Autonomic Nervous and Hydration Status on the Healthy Conditions for Kidney Disease Patients
作者: 陳郴優
Chen-Yu Chen
關鍵字: 末期腎臟病;含水量;自律神經;心率變異度;資料探勘;end-stage renal disease;hydration status;autonomic nervous system;heart rate variability;data mining
引用: 中文文獻 專書 丁一賢、陳牧言 (2005)。資料倉儲與資料探勘。 台北市:滄海圖書。 李淑娟 (2015)。資料採礦運用,以SAS Enterprise Miner為工具。 臺北市:賽仕電腦軟體。 夏瑪 (S. Sharma)(2002)。多變量分析(呂金河譯)。 台中市:滄海書局。(原作1996年出版) 財團法人國家衛生研究院 (2015)。2015臺灣慢性腎臟病臨床診療指引。 財團法人器官捐贈移植登錄中心. (2016). 2009 年至 2016 年國內肝、腎臟活體捐贈移植例數. 許志成(主編)(2017)。2016台灣腎病年報。 衛生福利部 : 國家衛生研究院、台灣腎臟醫學會。 譚、史坦巴赫、庫瑪 (P. N. Tan, M. Steinbach, & V. Kumar)(2008)。資料探勘 (施雅月、賴錦慧譯):台灣培生教育出版。(原作2005年出版) 向殿正男 (1992)。Fuzzy手法進階 (中國生產力譯)。 新北市:全華科技圖書公司。 秉昱科技 (2001)。模糊邏輯與類神經模糊在商業和財政的應用。 台北市:儒林圖書。 中文期刊 江昭龍 (2015)。醫療檢驗數據之腎臟疾病鑑別。資訊科技國際期刊,9(2),頁 43-49. 吳希文, 史麗珠, 張睿詒, 陳為堅, & 楊銘欽(2009)。慢性腎臟病與其相關因子之探討—以社區成人健康檢查資料分析。台灣衛誌, 28(5),頁 374-384。 吳哲熊、楊紹佑(2009)。腹膜透析方法介紹。腎臟與透析, 21(4),頁 206-210。 吳逸如(1996)。自主神經系統。當代醫學, 23(8),頁 22-26。 翁根本、何慈育、歐善福、林竹川、謝凱生(2009)。心律變動性分析。台灣醫界, 52(6),頁290-293。 陳垂呈, & 陳宗義(2010)。利用資料探勘建置疾病高危險群警示系統。工程科技與教育學刊, 7(5),頁 769-775。 蔡宜純、顧進裕(2007)。慢性腎臟病與心血管疾病危險因子之探討。腎臟與透析, 19(1),頁 17-22。 其他類別(網路資料、報告、學位論文等) 衛生福利部中央健康保險署(2016)。台灣透析相關數據。 取自 https://www.nhi.gov.tw/Resource/webdata/26258_1_2015_%E7%99%BC%E7%94%9F%E7%8E%87_%E7%9B%9B%E8%A1%8C%E7%8E%87_%E7%B3%96%E5%B0%BF%E7%97%85%E9%80%8F%E6%9E%90_%E7%BD%AE%E6%94%BE%E5%85%A8%E7%90%83%E8%B3%87%E8%A8%8A%E7%B6%B2-1050714-2%E7%89%88.pdf 衛生福利部統計處(2017)。105年死因統計結果分析。 取自 https://www.mohw.gov.tw/cp-16-33598-1.html 衛生福利部國民健康署慢性疾病防治組(2015)。台灣洗腎人口多的原因。 胡瑞蘭(2012)。運用類神經網路建立糖尿病性腎臟病變病患預測模型分析。碩士論文,台北醫學大學醫學資訊研究所,台北市。 程偉哲(2016)。應用基因演算法為基礎的直覺模糊神經網路於急診室急性肝炎病患醫療成本預測之研究。博士論文,國立臺灣科技大學工業管理系,台北市。 郭宇清(2013)。精神分裂症與慢性腎臟病之關聯性。碩士論文,國立交通大學生物資訊及系統生物研究所,新竹市。 陳冠吟(2017)。決策樹、羅吉斯迴歸與類神經網路預測員工績效之比較研究。碩士論文,國立中央大學人力資源管理研究所,桃園縣。 黃原博(2010)。應用資料探勘技術於慢性腎臟病之預測。碩士論文,南華大學資訊管理學系研究所,嘉義。 黃惠娟(2011)。應用資料探勘技術建構慢性腎衰竭病人透析存活之預測分析。碩士論文,國立中正大學資訊管理研究所,嘉義。 謝泉發(2014)。使用中草藥與慢性腎臟病之發生與預後相關研究。博士論文,國立陽明大學環境與職業衛生研究所,台北。   英文文獻 Books Han, J., Kamber, M., & Pei, J. (2006). Data Mining : Concepts and Techniques, 2/e: Morgan Kaufmann. Tan, P. N., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining: Pearson College Div. Journal Papers Brotman, D. J., Bash, L. D., Qayyum, R., Crews, D., Whitsel, E. A., Astor, B. C., & Coresh, J. (2010). Heart Rate Variability Predicts ESRD and CKD-Related Hospitalization. Journal of the American Society of Nephrology, 21(9), 1560-1570. Chamney, P. W., Wabel, P., Moissl, U. M., Muller, M. J., Bosy-Westphal, A., Korth, O., & Fuller, N. J. (2007). A whole-body model to distinguish excess fluid from the hydration of major body tissues. American Journal of Clinical Nutrition, 85(1), 80-89. Chertow, G. M., Goldstein-Fuchs, D. J., Lazarus, J. M., & Kaysen, G. A. (2005). Prealbumin, mortality, and cause-specific hospitalization in hemodialysis patients. Kidney International, 68(6), 2794-2800. Chiu, D. Y. Y., Sinha, S., Kalra, P. A., & Green, D. (2014). Sudden cardiac death in haemodialysis patients: Preventative options. Nephrology, 19(12), 740-749. Colombo, P. C., Ganda, A., Lin, J., Onat, D., Harxhi, A., Iyasere, J. E., . . . Cotter, G. (2012). Inflammatory activation: cardiac, renal, and cardio-renal interactions in patients with the cardiorenal syndrome. Heart Failure Reviews, 17(2), 177-190. Di Lullo, L., Rivera, R., Barbera, V., Bellasi, A., Cozzolino, M., Russo, D., . . . Ronco, C. (2016). Sudden cardiac death and chronic kidney disease: From pathophysiology to treatment strategies. International Journal of Cardiology, 217, 16-27. Ferrario, M., Moissl, U., Garzotto, F., Cruz, D. N., Clementi, A., Brendolan, A., . . . Ronco, C. (2014). Effects of fluid overload on heart rate variability in chronic kidney disease patients on hemodialysis. Bmc Nephrology, 15. Fienberg, S. E. (1989). Loglinear Models for Contingency Table Analysis - a Citation Classic Commentary on the Analysis of Cross-Classified Categorical-Data by Fienberg,S.E. Current Contents/Social & Behavioral Sciences(18), 15-15. Fouque, D., Kalantar-Zadeh, K., Kopple, J., Cano, N., Chauveau, P., Cuppari, L., . . . Wanner, C. (2008). A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney International, 73, 391-398. Hsu, C. C., Hwang, S. J., Wen, C. P., Chang, H. Y., Chen, T., Shiu, R. S., . . . Yang, W. C. (2006). High Prevalence and Low Awareness of CKD in Taiwan: A Study on the Relationship Between Serum Creatinine and Awareness From a Nationally Representative Survey. American Journal of Kidney Diseases, 48(5), 727-738. Iseki, K., Kawazoe, N., & Fukiyama, K. (1993). Serum-Albumin Is a Strong Predictor of Death in Chronic Dialysis Patients. Kidney International, 44(1), 115-119. Kalantar-Zadeh, K., Ikizler, T. A., Block, G., Avram, M. M., & Kopple, J. D. (2003). Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences. American Journal of Kidney Diseases, 42(5), 864-881. Kalantar-Zadeh, K., Kilpatrick, R. D., Kuwae, N., McAllister, C. J., Alcorn, H., Kopple, J. D., & Greenland, S. (2005). Revisiting mortality predictability of serum albumin in the dialysis population: time dependency, longitudinal changes and population-attributable fraction. Nephrology Dialysis Transplantation, 20(9), 1880-1888. Kalantar-Zadeh, K., & Kopple, J. D. (2001). Relative contributions of nutrition and inflammation to clinical outcome in dialysis patients. American Journal of Kidney Diseases, 38(6), 1343-1350. Kasiske, B. L., Snyder, J. J., Gilbertson, D. T., & Wang, C. C. (2004). Cancer after kidney transplantation in the United States. American Journal of Transplantation, 4(6), 905-913. Kaysen, G. A. (1998). Biological basis of hypoalbuminemia in ESRD. Journal of the American Society of Nephrology, 9(12), 2368-2376. Kaysen, G. A., Gambertoglio, J., Jimenez, I., Jones, H., & Hutchison, F. N. (1986). Effect of Dietary-Protein Intake on Albumin Homeostasis in Nephrotic Patients. Kidney International, 29(2), 572-577. Kim, B. S., Jeon, D. S., Shin, M. J., Kim, Y. O., Song, H. C., Lee, S. H., . . . Bang, B. K. (2005). Persistent elevation of C-reactive protein may predict cardiac hypertrophy and dysfunction in patients maintained on hemodialysis. American Journal of Nephrology, 25(3), 189-195. Kopple, J. D. (1997). McCollum Award Lecture, 1996: Protein-energy malnutrition in maintenance dialysis patients. American Journal of Clinical Nutrition, 65(5), 1544-1557. Kusiak, A., Dixon, B., & Shah, S. (2005). Predicting survival time for kidney dialysis patients: a data mining approach. Computers in Biology and Medicine, 35(4), 311-327. Mehrotra, R., & Kopple, J. D. (2001). Nutritional management of maintenance dialysis patients: Why aren't we doing better? Annual Review of Nutrition, 21, 343-379. Menon, V., Gul, A., & Sarnak, M. J. (2005). Cardiovascular risk factors in chronic kidney disease. Kidney International, 68(4), 1413-1418. Moissl, U. M., Wabel, P., Chamney, P. W., Bosaeus, I., Levin, N. W., Bosy-Westphal, A., . . . Fuller, N. J. (2006). Body fluid volume determination via body composition spectroscopy in health and disease. Physiological Measurement, 27(9), 921-933. Nalesso, F., Ferrario, M., Moissl, U., Brendolan, A., Zanella, M., Cruz, D. N., . . . Ronco, C. (2011). Body Composition and Heart Rate Variability to Achieve Dry Weight and Tolerance. Hemodialysis: New Methods and Future Technology, 171, 181-186. Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., . . . Malliani, A. (1986). Power Spectral-Analysis of Heart-Rate and Arterial-Pressure Variabilities as a Marker of Sympathovagal Interaction in Man and Conscious Dog. Circulation Research, 59(2), 178-193. Ranpuria, R., Hall, M., Chan, C. T., & Unruh, M. (2008). Heart rate variability (HRV) in kidney failure: measurement and consequences of reduced HRV. Nephrology Dialysis Transplantation, 23(2), 444-449. Santhakumaran, T., Samad, N., & Fan, S. L. (2016). Hydration status measured by BCM: A potential modifiable risk factor for peritonitis in patients on peritoneal dialysis. Nephrology, 21(5), 404-409. Seibert, E., Muller, S. G., Fries, P., Pattmoller, J., Kuss, O., Heine, G. H., . . . Kuhlmann, M. K. (2013). Calf Bioimpedance Spectroscopy for Determination of Dry Weight in Hemodialysis Patients: Effects on Hypertension and Left Ventricular Hypertrophy. Kidney & Blood Pressure Research, 37(1), 58-67. Tsai, Y. C., Chiu, Y. W., Tsai, J. C., Kuo, H. T., Hung, C. C., Hwang, S. J., . . . Chen, H. C. (2015). Association of Fluid Overload with Cardiovascular Morbidity and All-Cause Mortality in Stages 4 and 5 CKD. Clinical Journal of the American Society of Nephrology, 10(1), 39-46. Vieira, C. F. D., Lima, M. M. O., Costa, H. S., Diniz, K. M. A., Guiao, J. P. L., Alves, F. L., . . . Figueiredo, P. H. S. (2016). Correlation between indexes of autonomic maneuvers and heart rate variability in hemodialysis patients. Clinical Autonomic Research, 26(3), 181-188. Wabel, P., Moissl, U., Chammney, P., Jirka, T., Machek, P., Ponce, P., . . . Wizemann, V. (2008). Towards improved cardiovascular management: the necessity of combining blood pressure and fluid overload. Nephrology Dialysis Transplantation, 23(9), 2965-2971. Wen, C. P., Cheng, T. Y. D., Tsai, M. K., Chang, Y. C., Chan, H. T., Tsai, S. P., . . . Wen, S. F. (2008). All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet, 371(9631), 2173-2182. Reports International Society of Nephrology (ISN). (2013). KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Chap 1: Definition and classification of CKD. International Society of Nephrology (ISN). (2017). Global Kidney Health Atlas. Zaïane, O. R. (1999). CMPUT690 Principles of Knowledge Discovery in Databases. University of Alberta United State Renal Data System (USRDS) (2017). 2017 Annual Data Report: Epidemiology of Kidney Disease in the UNITED STATES
摘要: 
本研究旨在探討含水量與心率變異度對腎臟病患健康狀況的影響關係。主要的工作為針對來自台灣中部某醫院之真實病患數據,採用數種不同的方法,以分析含水量與心率變異度之交乘項,對於病人之健康狀態,即死亡與否的影響。所使用的方法包括羅吉斯回歸(logistic regression)、類神經模糊(fuzzy-neural network),以及共變異數分析(Analysis of Covariance, ANCOVA)。
本研究所發現之重要結論敘述如下。首先,羅吉斯回歸結果顯示出該交乘項對死亡與否有負向的顯著影響。另外由類神經模糊與共變異數分析共同指出:當心率變異度與含水量皆為最低時,其死亡數值最高;反之,當心率變異度低組且含水量高組,或心率變異度中組且含水量低組,其死亡數值最低。透過上述三種分析方法之結果,不僅顯示了含水量與心率變異度對死亡的影響存在交互作用,亦找出了該交互作用對於病人死亡與否之間有非線性之影響。透過本研究,對於腎臟病人的健康狀況與其重要因子間有了深入的了解。

The influences of hydration status (HS) and heart rate variability (HRV) on the health condition of those patients suffering from chronic kidney disease (CKD) were explored in this work. The major task is to explore the impact of the interaction term between HS and HRV on the death index of the patients through different methods, based on the actual data from a hospital located in the central part of Taiwan. The methods used include logistic regression, fuzzy-neural network, and ANCOVA.
The critical outcomes obtained from this research are addressed as the following. Firstly, an obvious and negative relation was found in between the interaction term and the death index through logistic regression. Secondly, a similar conclusion can be made by performing fuzzy-neural network and ANCOVA. That is, the highest death index occurs under the lowest HS and HRV. On the other hand, the lowest death index occurs under two circumstances, one with the lowest HRV and the highest HS, another one with the medium HRV and the lowest HS. Through the above-mentioned three analysis method, not only the existence of the interaction term is identified, but the non-linearity nature of that influence is proved. Through this work, the better understanding of modeling and analysis of the relation between the health condition of CKD patients and the important factors are proposed.
URI: http://hdl.handle.net/11455/97828
Rights: 同意授權瀏覽/列印電子全文服務,2022-02-13起公開。
Appears in Collections:企業管理學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-108-7105023109-1.pdf2.75 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.