Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97832
標題: 以水熱化學電池法與電漿電解氧化於導電氮化物薄膜製備鈣鈦礦膜之製程與成長機制研究
Syntheses and formation mechanisms of perovskite films prepared by hydrothermal–galvanic couple and plasma electrolytic oxidation methods over conductive nitride-coated substrates
作者: 鄧煥平
Huan-Ping Teng
關鍵字: 電漿電解氧化法;水熱化學電池法;導電氮化物;鈣鈦礦氧化物;Plasma electrolyte oxidation;Hydrothermal galvanic couple;Nitride-coated;Perovskite films
引用: [1] M.W. Davidson, G.F. Lofgren, 'Photomicrography in the geological sciences,' J. Geol. Educ. 39(1991) 403. [2] M.R. Levy, PhD Theses: Crystal structure and defect properties in ceramic materials, University of London, 2005. [3] V. Golschmidt, 'Die gesetze der krystallochemie,' Die Naturwissenschaften 21 (1926) 477. [4] H. Megaw 'Crystal structure of barium titanate' Nature 155 (1945) 485. [5] W. Liu, J. Liao, S. Wang, X. Huang, Y. Zhang, 'Significant reduction of dielectric loss of Ba0.51Sr0.34TiO3 film modified by Y/Mn alternate doping and preheating,' Ceram. Int. 44 (2018) 15653. [6] T. Fujiwara, L. An, Y. Park, N. Happo, K. Hayashic, H. Onishi, 'Heteroepitaxial barium-doped NaTaO3 films on SrTiO3(001) substrate,' Thin Solid Films 658 (2018) 66. [7] R.A. Scheidt, G.F. Samu, C. Janáky, P.V. Kamat, 'Modulation of charge recombination in CsPbBr3 perovskite films with electrochemical bias,' J. Am. Chem. Soc. 140 (2018) 86. [8] P.-H. Chan, H.-S. Chan, F.-H. Lu, 'A facile method to control grain sizes of barium strontium titanate films on TiN/Si in the hydrothermal–galvanic couple synthesis,' Ceram. Int. 43 (2017) S578. [9] S. Liu, J. Zeng, 'Effects of negative voltage on microstructure and corrosion resistance of red mud plasma electrolytic oxidation coatings,' Surf. Coat. Technol. 352 (2018) 15. [10] B.E. Hayden, S. Yakovlev, 'Structural, dielectric and ferroelectric properties of (Bi,Na)TiO3–BaTiO3 system studied by high throughput screening,' Thin Solid Films 603 (2016) 108. [11] H.-T. Wu, Y.-F. Chen, C.-F. Shiha, C.-C. Leu, S.-H. Wu, 'Memory properties of (110) preferring oriented CH3NH3PbI3 perovskite film prepared using PbS-buffered three-step growth method,' Thin Solid Films 660 (2018) 320. [12] R.J. Rodríguez, J.A. García, A. Medrano, M. Rico, R. Sánchez, R. Martínez, C. Labrugère, M. Lahaye, A. Guette, 'Tribological behaviour of hard coatings deposited by arc-evaporation PVD,' Vacuum 67 (2002) 559. [13] H.O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications, Park Ridge, Noyes Publications, New York, (1996) p 163. [14] A. Singh, P. Kuppusami, S. Khan, C. Sudha, R. Thirumurgesan, R. Ramaseshan, R. Divakar, E. Mohandas, S. Dash, ' Influence of nitrogen flow rate on microstructural and nanomechanical properties of Zr–N thin films prepared by pulsed DC magnetron sputtering,' Appl. Surf. Sci. 280 (2013) 117. [15] D. S. Lee, H. J. Woo, D. Y. Park, J. Ha, C. S. Hwang, E. Yoon 'Effects of the microstructure of platinum electrode on the oxidation behavior of TiN diffusion barrier layer,' Jpn. J. Appl. Phys. 42 (2003) 630. [16] M. B. Takeyama, T. Itoi, E. Aoyagi, A. Noya, 'High performance of thin nano-crystalline ZrN diffusion barriers in Cu/Si contact systems,' Appl. Surf. Sci. 190 (2002) 450. [17] Y.X. Leng, J.Y. Chen, P. Yang, J. Wang, A.S. Zhao, G.J. Wan, H. Sun, N. Huang, 'The microstructure and mechanical properties of TiN and TiO2/TiN duplex films synthesized by plasma immersion ion implantation and deposition on artificial heart valve,' Surf. Coat. Technol. 201 (2006) 1012. [18] Z. Kertzman, J. Marchal, M. Suarez, M.H. Staia, P. Filip, P. Kohli, S.M. Aouadi, 'Variation of color in Zirconium nitride thin films prepared at high Ar flow rates with reactive dc magnetron sputtering' J. Biomed. Mater. Res. A84 (2007) 1061. [19] Y. Wang, H. Yuan, X. Lu, Z. Zhou, D. Xiao, 'All solid-state pH electrode based on titanium nitride sensitive film,' Electroanalysis 18 (2006) 1493. [20] 呂福興,余錦智,揭由志,詹佩諠,伍組聰,製備鈦酸鋇的方法,2006,中華民國發明專利,證書證號 I261633。 [21] 呂福興,許淑君,揭由志,於氮化鈦上製備鈦酸鋇膜之方法,2009,中華民國發明專利,證書證號I318246。 [22] 呂福興,鄧煥平,揭由志,鋯酸鋇膜之製造方法,2010,中華民國發明專利,證書證號 I321168。 [23] 呂福興,趙玲夙,詹慕萱,鈦酸氫鈉之製備方法,2013,中華民國發民專利,證書證號I412627。 [24] R.A Laudise, P.M Dryburgh, Advanced Crystal Growth, New York: Prentice Hall, (1987) p 267. [25] K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology, Norwich, New York: Noyes Publications, (2001). [26] M.Yoshimura, K.Byrappa, 'Hydrothermal processing of materials: past, presentand future,' J.Mat.Sci.43 (2008) 2085. [27] E.B. Slamovich, I.A. Aksay, 'Structure evolution in hydrothermally processed (<100oC) BaTiO3 films,' J.Am.Ceram.Soc.79 (1996) 239. [28] S. Venigalla, P. Bendale, J.H. Adair, 'Low temperature electrochemical synthesis and dielectric characterization of barium titanate films using nonalkali electrolytes,' J. Electrochem. Soc. 142 (1995) 2101. [29] S.M.V. Novais, T.J. Monteiro, V.C. Teixeira, M.A. Gomes, M.E.G. Valerio, Z.S. Macedo and L.B. Barbosa, 'Hydrothermal synthesis of CdWO4 for scintillator-polymer composite films development,' J. Lumin. 199 (2018) 225. [30] D. Ren, J. Li, Y. Bao, Z. Wu, S. He, A. Wang, F. Guo, Y. Chen, 'Low-temperature synthesis of flower-like ZnO microstructures supported on TiO2 thin films as efficient antifungal coatings for bamboo protection under dark conditions,' Colloids Surf. A 555 (2018) 381. [31] M. Yoshimura, 'Why, and how about advanced inorganic materials,' Eur. J. Solid State Inorg. Chem. 32 (1995) I-IV. [32] N. Ishizawa, H. Banno, M. Hayashi, S.E. Yoo, M. Yoshimura, 'Preparation of BaTiO3 and SrTiO3 polycrystalline thin films on flexible polymer film substrate by hydrothermal method,' J. Appl. Phys. 29 (1990) 2467. [33] V.M. Fuenzalida, M.E. Pilleux, 'Hydrothermally grown BaZrO3 films on zirconium metal: microstructure, x-ray photoelectron spectroscopy, and Auger electron spectroscopy depth profiling,' J. Mater. Res., 10 (1995) 2749. [34] M.A. McCormick, R.K. Roeder, E.B. Slamovich, 'Processing effects on the composition and dielectric properties of hydrothermally derived BaxSr1-xTiO3 thin films,' J. Mater. Res. 16 (2001) 1200. [35] V.M. Golschmidt, 'Die Gesetze der Krystallochemie,' Die Naturwissenschaften. 21 (1926) 477. [36] 余錦智,以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇膜之研究,國立中興大學材料科學與工程學系碩士論文,2005年。 [37] Y.-C. Chie, C.-C. Yu, F.-H. Lu, 'Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method,' Appl. Phys. Lett. 90 (2007) 032904. [38] 蔡迪佑,以水熱-化學電池法於氮化鈦膜上製備鈦酸鋇膜及其成長動力學分析,國立中興大學材料科學與工程學系碩士論文,2010年。 [39] 簡榛密,以水熱-化學電池法在鍍氮化鈦膜基材上製備鈦酸鋇膜與應用於天線之研究,國立中興大學材料科學與工程學系碩士論文,2012年。 [40] C.-J. Yang, D.-Y. Tsai, P.-H. Chan, C.-T. Wu, F.-H. Lu, 'Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates,' Thin Solid Films 542 (2013) 108. [41] 陳祺涵,以低Ba離子濃度在水熱-化學電池法生成BaTiO3薄膜之探討,國立中興大學材料科學與工程學系碩士論文,2014年。 [42] 林佳君,以水熱-化學電池法於不同表面形貌及電阻率之TiN/Si上製備SrTiO3膜之研究,國立中興大學材料科學與工程學系碩士論文,2011年。 [43] 蔡右相,水熱-化學電池法中以低Sr離子濃度生成SrTiO3薄膜之研究,國立中興大學材料科學與工程學系碩士論文,2013年。 [44] 詹薰述,以水熱-化學電池法於TiN/Si基材上製備BaxSr1-xTiO3薄膜之特性研究,國立中興大學材料科學與工程學系碩士論文,2015年。 [45] 詹佩諠,低溫水熱化學電池法於氮化鈦膜上製備鈦酸鍶鋇薄膜之研究,國立中興大學材料科學與工程學系博士論文,2018年。 [46] 鄧煥平,以低溫水熱-化學電池法於鍍氮化鋯膜矽基材上製備鋯酸鋇膜之研究,國立中興大學材料科學與工程學系碩士論文,2007年。 [47] 吳効泓,以水熱-化學電池法於ZrN/Si上製備BaZrO3薄膜及成長機制分析,國立中興大學材料科學與工程學系碩士論文,2014年。 [48] H.-P. Teng, Y.-C. Chieh, Fu-Hsing Lu, 'Preparation of BaZrO3 films by physical vapor deposition and a novel hydrothermal duplex technique,' Thin Solid Films 516 (2007) 364. [49] H.-P. Teng, H.-H. Wu, F.-H. Lu, 'Synthesis and formation mechanisms of BaZrO3 thin films prepared on ZrN-coated substrates by a low temperature hydrothermal–galvanic couple method,' Thin Solid Films 618 (2016) 224. [50] Y.-H. Tsai, Y.-C. Chieh, F.-H. Lu, 'Influence of Sr+2 concentrations on growth of SrTiO3 thin films synthesized by hydrothermal–galvanic couple method,' Thin Solid Films 570 (2014) 479. [51] P.-H. Chan, H.-S. Chan, F.-H. Lu, 'A facile method to control grain sizes of barium strontium titanate films on TiN/Si in the hydrothermal–galvanic couple synthesis,' Ceram. Int. 43 (2017) S578. [52] P. Gupta, G. Tenhundfeld, E.O. Daigle, D. Ryabkov, 'Electrolytic plasma technology: Science and engineering-An overview,' Surf. Coat. Technol. 201 (2007) 8746. [53] T.B. Van, S.D. Brown, G.P. Wirtz, 'Mechanism of anodic spark deposition,' Am. Ceram. Soc. Bul, 56 (1977) 563. [54] G.A.Markov, G.V. Markova, USSR Patent No. 526961: Method for forming anodes of electrolytic capacitors, Bul. Inv. 32 1976. [55] A.V. Nikolaev, G.A. Markov, B.N. Pishchevitskii, 'New phenomenon in electrolysis,' Izv. Sib. Otd. Akad. Nauk SSSR. Ser. Khim. Nauk, 5 (1977) 32. [56] G.A. Markov, O.P. Terleeva, E.K. Shulepko, Microarc and Arc Methods of Applying Protective Coatings: Proc. Symposium, No. 185: Improving the wear resistance of parts of gas- and oil-field equipment by using the phenomenon of selective transport and creating wear-resistant coatings, Gubkin MINKhiGP, Moscow (1985), pp. 54–64. [57] Ditrich K.H. Schiender, 'Structure and Properties of ANOF Layers,' Crystal Res. Tecnhol. 19 (1984) 93. [58] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, 'Plasma electrolysis for surface engineering,' Surf. Coat. Technol. 122 (1999) 73. [59] N.P. Sluginov, 'Electric discharges in water,' J. Russ. Phys. Chem. Soc. 10 (1878) 241. [60] A. Günterschuze, H. Betz, 'Electrolytic rectifying action,' Z. Pfys. 78 (1932) 196. [61] A. Güntershulze, H. Betz, Elektroliticheskie Kondensatory (Electrolytic Capacitors), Moscow: Obornizidat, 1938. [62] L.I. Gruss, W. McNeil, 'Anodic spark reaction products in aluminate, tungstate, and silicate solutions,' Electrochem. Technol. 1 (1963) 28. [63] W. McNeil, L.L. Gruss, 'Anodic film growth by anion deposition in aluminate, tungstate, and phosphate solutions,' J. Electrochem. Soc. 110(1963) 853 [64] 曾珠玲,以電漿電解氧化法於TiN 薄膜底材上製備鈦酸鋇膜及其特性研究, 國立中興大學材料科學與工程系碩士論文,2011年。 [65] 許泓文,以電漿電解氧化法於TiN/Si上製備BaxSr1-xTiO3膜及其特性研究,國立中興大學材料科學與工程系碩士論文,2015年。 [66] 林欣儀,以電漿電解氧化法於鈦塊材及氮化鈦膜上製備含鍶的氫氧基磷灰石及其特性分析,國立中興大學材料科學與工程系碩士論文,2016年。 [67] 蕭銓熯,以電漿電解氧化法於空氣濺鍍之ZrN/Si基材上製備氧化鋯膜及其特性分析,國立中興大學材料科學與工程系碩士論文,2014年。 [68] H.O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications, Noyes Publications, New Jersey (1996) p.193. [69] W.-J. Chou, G.-P. Yu, J.-H. Huang, 'Deposition of TiN thin films on Si (100) by HCD ion plating,' Surf. Coat. Technol. 140 (2001) 206. [70] S. Guruvenket, G.M. Rao, 'Effect of ion bombardment and substrate orientation on structure and properties of titanium nitride films deposited by unbalanced magnetron sputtering,' J. Vac. Sci. Technol. A 20 (2002) 678. [71] M.-H. Chan, F.-H. Lu, 'Air-based deposition and processing windows of sputtered TiN, TiNxOy, and N-doped TiOx thin films,' Surf. Coat. Technol. 210 (2012) 135. [72] M.-H. Chan, F.-H. Lu, 'Air-Based Deposition of Conductive Nitride Thin Films by Sputtering,' J. Electrochem. Soc. 158 (2011) 75. [73] I.N. Frantsevich, E.A. Zhurakovskii, A.B. Lyashchenko, 'Elastic contacts and characteristics of the electron structure of certain classes of refractory compounds obtained by the metal-power method,' Inorg. Mater. 3 (1967) 6. [74] A. J.Perry, 'A contribution to the study poisson's rations and elastic constant of TiN, ZrN, and HfN', Thin Solid Films, 193 (1990) 463. [75] N. Alexandre, M. Desmaison-Brut, 'Mechanical properties of hot isostatically pressed zirconium nitride materials,' J. Mater. Sci. 28 (1993) 2385. [76] K. Kobayashi, 'First-principles study of the electronic properties of transition metal nitride surfaces,' Surf. Sci. 493 (2001) 665. [77] E.W. Niu, L. Li, G.H. Lv, H. Chen, X.Z. Li, X.Z. Yang, S.Z. Yang, 'Characterization of Ti–Zr–N films deposited by cathodic vacuum arc with different substrate bias,' Appl. Surf. Sci. 254 (2008) 3909. [78] Y.-W. Lin, H.-A. Chen, G.-P. Yu, J.-H. Huang, 'Effect of bias on the structure and properties of (Ti,Zr)N thin films deposited by unbalanced magnetron sputtering,' Thin Solid Films 618 (2016) 13. [79] W.A. Johnson, R.F. Mehl, 'Reaction kinetics in processes of nucleation and growth,' Trans. Am. Inst. Min. Metall. Eng. 135 (1939) 416. [80] M. Avrami, 'Kinetics of phase change. I general theory,' J. Chem. Phys. 7 (1939) 1103. [81] M. Avrami, 'Kinetics of phase change. II transformation‐time relations for random distribution of nuclei,' J. Chem. Phys. 8 (1940) 212. [82] M. Avrami, 'Granulation, phase change, and microstructure kinetics of phase change. III,' J. Chem. Phys. 9 (1941) 177. [83] J.D. Hancock, J.H. Sharp, 'Method of composition solid-state kinetic data and its application to the decomposition of kaolinite, brucite and BaCO3,' J. Am. Ceram. Soc. 55 (1971) 74. [84] J.E. House, Inorganic Chemistry, second ed. Academic Press, United Kingdom, 2013. [85] J.A. Dean, Lange's Handbook of Chemistry, McGraw-Hill, Inc., New York, 1999. [86] Alejandra V. Alvarez, V.M. Fuenzalida, 'Evidence of transition metal diffusion during hydrothermal ceramic film growth: Ba(Ti, Zr)O3 on layered Ti–Zr alloy,' J. Mater. Res. 14 (1999) 11. [87] A. Dixit, S.B. Majumder, A. Savvinov, R.S. Katiyar, R. Guo, A.S. Bhalla, 'Investigations on the sol–gel-derived barium zirconium titanate thin films,' Mater. Lett. 56 (2002) 933. [88] L.L. Jiang, X.G. Tang b, S.J. Kuang, H.F. Xiong, 'Surface chemical states of barium zirconate titanate thin films prepared by chemical solution deposition,' App. Surf. Sci. 255 (2009) 8913. [89] J. Venturaa, M.C. Polo, C. Ferrater, S. Hernández, J. Sancho-Parramón, L.E. Coy, L. Rodríguez, A. Canillas, L. Fábrega, M. Varela, 'Heterogeneous distribution of B-site cations in BaZrxTi1−xO3epitaxial thin films grown on (0 0 1) SrTiO3 by pulsed laser deposition,' App. Surf. Sci. 381 (2016) 12. [90] G. Suchaneck, E. Chernova, A. Kleiner, R. Liebschner, L. Jastrabík, D.C. Meyer, A. Dejneka, G. Gerlach, 'Vacuum-ultraviolet ellipsometry spectra and optical properties of Ba(Zr,Ti)O3 films,' Thin Solid Films 621 (2017) 58. [91] Z. Yu, C. Ang, R. Guo, A.S. Bhalla, 'Dielectric properties of Ba(Ti1 − xZrx)O3 solid solutions,' Mater. Lett. 61 (2007) 326. [92] X.-D. Jian, B. Lu, D.-D. Li, Y.-B. Yao, T. Tao, B. Liang, J.-H. Guo, Y.-J. Zeng, J.-L. Chen, S.-G. Lu, 'Large electrocaloric effect in lead-free Ba(ZrxTi1-x)O3 thick film ceramics,' J. Alloy. Compd. 742 (2018) 165. [93] T. Tick, J. Peräntie, H. Jantunen, A. Uusimäki, 'Screen printed low-sintering-temperature barium strontium titanate (BST) thick films,' J. Eur. Ceram. Soc. 28 (2008) 837. [94] F. Weyland, T. Eisele, S. Steiner, T. Frömling, G.A. Rossetti Jr., J. Rödel, N. Novak, 'Long term stability of electrocaloric response in barium zirconate titanate,' J. Eur. Ceram. Soc. 38 (2018) 551. [95] K.M. Sangwan, N. Ahlawat, S. Rani, S. Rani, R.S. Kundu, 'Influence of Mn doping on electrical conductivity of lead free BaZrTiO3 perovskite ceramic,' Ceram. Int. 44 (2018) 10315. [96] Y.-W. Lin, C.-W. Lu, G.-P. Yu, J.-H. Huang, 'Structure and properties of nanocrystalline (TiZr)xN1−x thin films deposited by dc unbalanced magnetron sputtering,' J Nanomater. 1 (2016) 1. [97] 鄭柏左,色彩理論與數位影像,新文京開發出版社,第五章:色彩的視覺理論,第93-110頁,民93年。 [98] 詹慕萱,濺鍍法中以空氣做為反應性氣體製備氮化鈦、氮氧化鈦與氮摻雜二氧化鈦薄膜及其特性研究,國立中興大學材料科學與工程學系博士論文,2011年。 [99] 吳伯倫,在物理氣相沈積法中以空氣做為反應性氣體製備ZrN薄膜,國立中興大學材料科學與工程學系碩士論文,2008年。 [100] I. Milošev, H.-H. Strehblow, B. Navinšek, 'Oxidation of ternary (Ti,Zr)N hard coatings studied by XPS,' Surf. Interface. Anal. 26 (1998) 242. [101] O.A. Trujillo, H.A. Castillo, L.C. Agudelo, A.Devia, 'Chemical and morphological properties of (Ti–Zr)N thin films grown in an arc pulsed system,' Microelectron. J. 39 (2008) 1379. [102] I. Valov, B. Luerssen, E. Mutoro, L. Gregoratti, R.A. De Souza, T. Bredow, S. Guüther, A. Barinov, P. Dudin, M. Martind, J. Janek, 'Electrochemical activation of molecular nitrogen at the Ir/YSZ interface,' Phys. Chem. Chem. Phys. 13 (2011) 3394. [103] H. Jena, V.K. Mittal, S. Bera, S.V. Narasimhan, K.V. Govindan Kutty , T.R.N. Kutty, 'X-ray photoelectron spectroscopic investigations on cubic BaTiO3, BaTi0.9Fe0.1O3 and Ba0.9Nd0.1TiO3 systems,' Appl. Surf. Sci. 254 (2008) 7074. [104] S.S. Kumbhar, M.A. Mahadik, P.K. Chougule, V.S. Mohite, Y.M. Huneg, K.Y. Rajpure, A.V. Moholkar, C.H. Bhosale, 'Structural and electrical properties of barium titanate (BaTiO3) thin films obtained by spray pyrolysis method,' Materials Science-Poland 33(2015) 852. [105] H. Zhang, J. Qiao, G. Li, S. Li, G. Wang, J. Wang, Y. Song, 'Preparation of Ce4+-doped BaZrO3 by hydrothermal method and application in dual-frequent sonocatalytic degradation of norfloxacin in aqueous solution,' Ultrason. Sonoch. 42 (2018) 356. [106] M. Miodyńska, B Bajorowicz, P. Mazierski, W. Lisowski, T. Klimczuk, M.J. Winiarski, A. Zaleska-Medynska, J. Nadoln, 'Preparation and photocatalytic properties of BaZrO3 and SrZrO3 modified with Cu2O/Bi2O3 quantum dots,' Solid State Sci. 74 (2017) 13. [107] N. Wakiya, K. Kuroyanagi, Y. Xuan, K. Shinozaki, N. Mizutani, 'An XPS study of the nucleation and growth behavior of an epitaxial Pb (Zr,Ti) O3/MgO (100) thin film prepared by MOCVD,' Thin Solid Films 372 (2000) 156. [108] C. Ostos, M.L. Martínez-Sarrión, L. Mestres, E. Delgado, P. Prieto, 'The influence of A-siterare-earth for barium substitution on the chemical structure and ferroelectric properties of BZT thin films,' J. Solid State Chem.182 (2009) 262. [109] J.F. Moilder, E.F. Stickle, P.E. sobol, K.D. Bomben, J. Cjastain, Handbook of X-ray Photolectron Spectroscopy: A Reference Book of Standard Spectra for Indentification and Interpretation of XPS Data, Physical Electronics Division, Perkin-Elmer Corporation, 1992, p. 252. [110] B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction. Prentice-Hall, New York, (2001) 367. [111] H.-P. Teng, H.-W. Hsu, F.-H. Lu, 'Formation of BaxSr1-xTiO3 films on TiN-coated substrates by plasma electrolytic oxidation,' Ceram. Int. 43 (2017) S584. [112] J.-L. Zeng, H.-P. Teng, F.-H. Lu, 'Electrochemical deposition of barium titanate thin films on TiN/Si substrates,' Surf. Coat. Technol. 231 (2013) 297. [113] W.M. Kriven, O.O. Popoola, M.H. Jilavi, and S.D. Brown, 'Preparation and microstructure characterization of anodic spark deposited barium titanate conversion layers,' J. Mater. Res. 14 (1999) 1437.
摘要: 
鈣鈦礦相結構氧化物是具有諸多重要工業應用之材料,然其製備方式通常為依賴高壓釜的高溫液相製程或需要複雜設備之氣相沉積製程。本研究主要是利用特殊的電化學製程-水熱化學電池法 (HT-GC) 與電漿電解氧化法 (PEO) 在新穎的導電氮化膜TiN、ZrN、(Ti,Zr)N等底材上製備結晶的鈣鈦礦相氧化膜,如BaTiO3、SrTiO3、BaZrO3、Ba(Zr,Ti)O3等。前者製程並不須外加任何電源,利用導線直接連接工作電極與對電極,形成化學電池作用,即可自發生成氧化物;後者則是施加高電壓,在工作電極上產生液態電漿,可快速生成氧化膜。以導電氮化膜作為工作電極可具不同於一般金屬底材之類磊晶成長和反應快速等優點。因此,探究水熱-化學電池之伽凡尼電流輔助成長作用與電漿電解氧化法中之液態電漿輔助成長效應,是本研究之重點。
水熱-化學電池法可於100oC以下的鹼性反應溶液中,在導電氮化膜工作電極上,經自發產生之伽凡尼電流,輔助成長鈣鈦礦氧化膜。伽凡尼電流輔助之效應,隨著反應溫度增加而增大。而當工作電極表面形貌不同時,也會影響氧化膜的結晶性與成長速率。另使用具優選方向的導電氮化物膜時,可形成類磊晶的氧化膜。至於調整不同的含鋇或含鍶濃度時,則可調控氧化膜的晶粒大小。使用不同的導電氮化膜,如TiN與ZrN電極,伽凡尼電流的特性曲線大不相同,表示兩個氮化物系統上成長鈣鈦礦氧化物的機制不同。這主要是TiN於溶液中形成鹽類的溶解度積 (Ksp) 遠大於ZrN而影響氧化物的生成。利用此簡單的水熱-化學電池法製程可於(Ti,Zr)N上製備立方相Ba(Zr,Ti)O3膜。
電漿電解氧化法可於常壓70oC下的含鋇鹼性電解液中,在反應1分鐘內快速在TiN上製備立方相BaTiO3,而於ZrN上生成ZrO2。相較於一般的電化學反應,電漿的輔助會使得氧化膜的相對強度、成長速率和抗腐蝕能力大幅的提升。所得到的氧化膜會因為表面電漿的轟擊,呈現多孔的表面形貌以及類似燒結的形貌。當選用不同的底材,由於導電氮化膜生成氧化膜的晶格不匹配度較低、具有離子性與小晶粒等,比起一般的金屬膜或是塊材形成之氧化膜成長速率快。而使用不同的導電氮化膜,如TiN與ZrN電極,在TiN上容易生成BaTiO3,然於ZrN上無法形成BaZrO3,主要為ZrN產生對水溶解度低的ZrO(OH)2鹽類所致。利用電漿電解氧化法製程亦可於(Ti,Zr)N底材製備立方相的Ba(Zr,Ti)O3膜。
水熱-化學電池法與電漿電解氧化法是兩種各具優勢之特殊電化學製程,前者可藉由化學電池作用,自發產生伽凡尼電流並形成氧化膜,後者可於短時間內藉由電解液中的電漿在電極上快速形成氧化膜。且相較於使用塊材或是金屬膜做為底材,導電氮化膜成長氧化膜的品質更為快速且優異。未來可拓展其更廣泛應用。

Perovskite oxides are important materials with many industrial applications. However, they are commonly prepared by high-temperature liquid phase deposition requiring autoclaves or gas-phase deposition with sophisticated equipment. This research mainly focuses on special electrochemical methods syntheses of perovskite oxide films, such as BaTiO3, SrTiO3, BaZrO3, Ba(Zr,Ti)O3 over novel conductive nitride films, TiN, ZrN, and (Ti,Zr)N seeding layers. The synthesizing methods include hydrothermal-galvanic couple (HT-GC) and plasma electrolytic oxidation (PEO) techniques. The HT-GC process is a spontaneous reaction resulted from connecting directly working and counter electrodes without applying any external power supply. In contrast, PEO requires a high-voltage power supply to generate liquid plasma on the working electrode, which can enhance crystalline oxides. The use of conductive nitride seeding layers for the working electrode can help to produce epitaxial-like oxide films and enhance the growth rate of oxides, compared with commonly-used metal substrates. The focal points include the investigation on the galvanic current-assisted growth of oxides during HT-GC and the liquid plasma-assisted growth of oxides in PEO.
In the HT-GC, galvanic currents were spontaneously generated in alkaline solutions below 100°C, which could aid the formation of perovskite oxides films on the conductive nitride working electrode. As the reaction temperature increased, the galvanic couple effect was also increased. The surface morphologies of nitride electrodes could be used to control the crystallinity and growth rate of the oxide films. The preferred-oriented conductive nitride films could be employed to produce epitaxial-like oxide films. By changing the concentrations of [Ba2+] or [Sr2+] in the solutions, the grain size of the oxide films could be tailored. Characteristic galvanic currents of TiN electrodes were very different from ZrN, indicating that the growth mechanisms of the perovskite oxides on the two nitride electrodes were also different. This is mainly because that the solubility products Ksp of TiN is much larger than that of ZrN when being dissolved in solutions to form resultant salts. Moreover, HT-GC is a facile process to produce cubic Ba(Zr,Ti)O3 films on (Ti,Zr)N.
In PEO, cubic BaTiO3 was prepared on TiN, and ZrO2 was made on ZrN in Ba-contained alkaline electrolytes at 70° for 1 minute. Compared with conventional electrochemical reactions, the plasma-assisted process enhanced the relative peak intensity, the growth rate and the corrosion resistance of obtained coatings. The obtained oxides exhibited a porous sintered-like surface morphology because of the bombardment of plasma on the electrode surface. With different electrode materials, the growth rates of oxide films on conductive nitride films were much higher than those on metal substrates. This is due to that the conductive nitride films have a lower lattice mismatch with the formed oxides and possess partial ionic bonding, smaller grain size, as well. Moreover, using different conductive nitride films, like TiN and ZrN, BaTiO3 was easily made on TiN, but BaZrO3 could not be formed on ZrN. This is mainly due to the lower solubility of ZrO(OH)2 resulted from ZrN. The cubic Ba(Zr,Ti)O3 could also be facilely produced on (Ti,Zr)N by PEO.
The HT-GC and PEO are two types of special electrochemical processes with their own advantages. In the HT-GC method, galvanic currents were spontaneously generated by the chemical potential driving force, which could enhance the formation of oxide films. During PEO, oxide films could be rapidly produced on electrodes by the aide of plasma generated in electrolytes. Moreover, the growth rates of oxides were much higher over conductive nitride films than bulk metals or metal films. These synthesizing methods may bring in more potential technological applications.
URI: http://hdl.handle.net/11455/97832
Rights: 同意授權瀏覽/列印電子全文服務,2021-02-01起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-108-8100066001-1.pdf11.32 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.