Please use this identifier to cite or link to this item:
標題: 以熱蒸鍍製備SnSe薄膜之熱電性質
Thermoelectric Properties of SnSe Thin Film Prepared by Thermal Evaporation
作者: 張玉欣
Yu-Hsin Chang
關鍵字: SnSe;薄膜;熱蒸鍍;熱電性質;SnSe;thin film;thermal evaporation;thermoelectric properties
引用: 1. D. K. Aswal, R. Basu and A. Singh, 'Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects.' Energy Conversion Management 114, (2016) p. 50-67. 2. S. Jacobsson and A. Johnson, 'The diffusion of renewable energy technology: an analytical framework and key issues for research.' Energy policy 28, (2000) p. 625-640. 3. L. D. Zhao, C. Chang, G. Tan, and M. G. Kanatzidis, 'SnSe: a remarkable new thermoelectric material.' Energy Environmental Science. 9, (2016) p. 3044-3060. 4. C. Bhandari and D. M. Rowe, 'CRC Handbook of thermoelectrics.' CRC Press, Boca Raton (1995) p. 49. 5. J. Peltier, 'Nouvelles expériences sur la caloricité des courants électrique.' Ann. Chim. Phys. 56, (1834) p. 371-386. 6. 巫振榮,「熱電元件應用」,20,2013,32-35. 7. L. Anatychuk, 'On the discovery of thermoelectricity by Volta.' Journal of Thermoelectricity (2004) p. 5-10. 8. 朱旭山,「奈米結構熱電材料之發展回顧」,298,2011,134. 9. L. Hicks and M. S. Dresselhaus, 'Effect of quantum-well structures on the thermoelectric figure of merit.' Physical Review B 47, (1993) p. 12727. 10. R. Ovik, B. Long, M. Barma, M. Riaz, M. Sabri, S. Said, and R. Saidur, 'A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery.' Renewable sustainable energy reviews. 64, (2016) p. 635-659. 11. 巫振榮,「熱電元件應用」,20,2013,32-35. 12. L. E. Bell, 'Cooling, heating, generating power, and recovering waste heat with thermoelectric systems.' Science 321, (2008) p. 1457-1461. 13. 朱旭山,「熱電材料與元件之原理與應用」,22,電子與材料雜誌,2004,78-89. 14. L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, 'Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals.' Nature. 508, (2014) p. 373. 15. K. S. Urmila, T. A. Namitha, J. Rajani, R. R. Philip, and B. Pradeep, 'Optoelectronic properties and Seebeck coefficient in SnSe thin films.' Journal of Semiconductors. 37, (2016) p. 093002. 16. E. Barrios-Salgado, M. Nair and P. Nair, 'Thin films of n-type SnSe2 produced from chemically deposited p-type SnSe.' Thin Solid Films 598, (2016) p. 149-155. 17. J. Singh and R. Bedi, 'Tin selenide films grown by hot wall epitaxy.' Journal of Applied Physics. 68, (1990) p. 2776-2779. 18. D. Pathinettam Padiyan, A. Marikani and K. Murali, 'Electrical and photoelectrical properties of vacuum deposited SnSe thin films.' Crystal Research Technology: Journal of Experimental Industrial Crystallography. 35, (2000) p. 949-957. 19. Z. Zainal, S. Nagalingam, A. Kassim, M. Hussein, and W. Yunus, 'Tin selenide thin films prepared through combination of chemical precipitation and vacuum evaporation technique.' Materials Science. 21, (2003) p. 225-233. 20. R. Indirajith, T. Srinivasan, K. Ramamurthi, and R. Gopalakrishnan, 'Synthesis, deposition and characterization of tin selenide thin films by thermal evaporation technique.' Current Applied Physics 10, (2010) p. 1402-1406. 21. R. Indirajith, M. Rajalakshmi, R. Gopalakrishnan, and K. Ramamurthi, 'Effects of Annealing on Thermally Evaporated SnSe Thin Films.' Ferroelectrics 413, (2011) p. 108-114. 22. N. Kumar, V. Sharma, N. Padha, N. Shah, M. Desai, C. Panchal, and I. Y. Protsenko, 'Influence of the substrate temperature on the structural, optical, and electrical properties of tin selenide thin films deposited by thermal evaporation method.' Crystal Research Technology: Journal of Experimental Industrial Crystallography. 45, (2010) p. 53-58. 23. U. Parihar, R. Kumar, K. Patel, C. Panchal, and N. Padha, 'Effect of film thickness on optical properties of tin selenide thin films prepared by thermal evaporation for photovoltaic applications.' American Journal of Materials Science. 2, (2012) p. 41-45. 24. N. Makori, I. Amatalo, P. Karimi, and W. Njoroge, 'Optical and electrical properties of SnSe thin films for solar cell applications.' American Journal of Condensed Matter Physics. 4, (2014) p. 87-90. 25. C. H. Suen, D. Shi, Y. Su, Z. Zhang, C. H. Chan, X. Tang, Y. Li, K. H. Lam, X. Chen, and B. Huang, 'Enhanced thermoelectric properties of SnSe thin films grown by pulsed laser glancing-angle deposition.' Journal of Materiomics. 3, (2017) p. 293-298. 26. W. T. Wang, Z. H. Zheng, F. Li, C. Li, P. Fan, J. T. Luo, and B. Li, 'Synthesis process and thermoelectric properties of n-type tin selenide thin films.' Journal of Alloys Compounds. 763, (2018) p. 960-965. 27. L. Davis, 'Properties of transparent conducting oxides deposited at room temperature.' Thin Solid Films. 236, (1993) p. 1-5. 28. X. Zheng, J. Li and Y. Zhou, 'X-ray diffraction measurement of residual stress in PZT thin films prepared by pulsed laser deposition.' Acta Materialia 52, (2004) p. 3313-3322. 29. J. Tauc and A. Menth, 'States in the gap.' Journal of non-crystalline solids. 8, (1972) p. 569-585. 30. L. J. v. d. Pauw, 'A method of measuring specific resistivity and Hall effect of discs of arbitrary shape.' Philips Res. Rep. 13, (1958) p. 1-9. 31. E. H. Hall, 'On a new action of the magnet on electric currents.' American Journal of Mathematics. 2, (1879) p. 287-292. 32. 丁慎訓,「物理實驗教程」,清華大學出版社有限公司,2002. 33. C. A. R. Maria Sahayaraj, A. Mohan, V. Arivazhagan, and S. Rajesh, 'Investigation on structural and optical properties of thermally evaporated SnSe thin films.' Chalcogenide Letters. 11, (2014) p. 47-52. 34. G. H. Chandra, J. N. Kumar, N. M. Rao, and S. Uthanna, 'Preparation and characterization of flash evaporated tin selenide thin films.' Journal of crystal growth. 306, (2007) p. 68-74. 35. L. D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, 'Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals.' Nature 508, (2014) p. 373. 36. W. T. Wang, Z. H. Zheng, F. Li, C. Li, P. Fan, J. T. Luo, and B. Li, 'Synthesis process and thermoelectric properties of n-type tin selenide thin films.' Journal of Alloys Compounds 763, (2018) p. 960-965. 37. A. Kulkarni, K. H. Schulz, T. Lim, and M. Khan, 'Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques.' Thin solid films 345, (1999) p. 273-277. 38. F. M. John, F. S. William, E. S. Peter, and D. B. Kenneth, 'Handbook of X-ray photoelectron spectroscopy.' Perkin-Elmer Corporation Physical Electronics Division, (1992). 39. E. S. Toberer, M. Christensen, B. B. Iversen, and G. J. Snyder, 'High temperature thermoelectric efficiency in Ba 8 Ga 16 Ge 30.' Physical Review B. 77, (2008) p. 075203.
本研究利用熱蒸鍍在玻璃基板上蒸鍍出SnSe薄膜,以不同退火溫度對SnSe薄膜進行熱處理2小時。利用X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、能量散射光譜儀(EDX)、X光光電子能譜儀(XPS)、紫外/可見光光譜儀(UV/Vis)、Hall效應分析儀(HEA)和熱電量測設備,分析SnSe薄膜的結晶結構、表面形貌、薄膜成分分析、表面成分分析、能隙、載子性質和熱電性質(含電導率與Seebeck係數)。從XRD鑑定蒸鍍出的薄膜為SnSe。隨著退火溫度增加,平均板厚也增加。SEM圖觀察到表面形貌為層狀結構。EDX分析SnSe成分莫耳比例接近1比1。XPS分析得知SnSe薄膜中有氧化物的產生影響其能隙及熱電性質。當退火溫度為450 ℃時能隙為1.86 eV,Hall量測得知其載子濃度與遷移率,經過退火後增加至3.45×1020 cm-3及4.85×10-1 cm2/Vs。當退火溫度為450 ℃,量測溫度為50 ℃時,電導率為39.21 S/cm,Seebeck係數為2.12 mV/K,計算出的功率因子為17.54 mW/(mK2)。

In this Study, the SnSe thin film deposited on glass substrate by thermal evaporation, and heat treated at different annealing temperatures for 2 hour. Analysis the crystal structure, surface morphology and compositional analysis of thin film , surface composition analysis, band gap, carrier properties and thermoelectric properties (including conductivity and Seebeck coefficient) of SnSe thin film using X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), UV/Vis spectrometer (UV/Vis), Hall effect analysis (HEA) and thermoelectric measuring equipment, respectively. The XRD confirmed the thin film by thermal evaporation was SeSe, and as the annealing temperature increases, the average plate thickness also increased. The surface morphology was observed as a layered structure by SEM. The ratio of SnSe composition in EDX analysis was close to 1:1. XPS analyses shows that the presence of oxides in the SnSe thin film affects the band gap and thermoelectric properties. The band gap is increased to 1.86 eV. When the annealing temperature is 450 °C. The carrier concentration and mobility are measured by Hall measurement. After heat treatment, it is increased to 3.45×1020 cm-3. And 4.85×10-1 cm2/Vs. when the annealing temperature is 450 °C and the measurement temperature is 50 °C, the conductivity is 39.21 S/cm, the Seebeck coefficient is 2.12 mV/K, and the calculated power factor is 17.54 mW. /(mK2).
Rights: 同意授權瀏覽/列印電子全文服務,2022-01-22起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-108-7105066045-1.pdf5.03 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.