Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97839
標題: 同步振動鑄造與振動應力消除對鑄鐵組織與機械性質之影響
Effect of Synchronous Vibration Casting and Vibration Stress Relief on the Microstructures and Mechanical Properties of Cast Iron
作者: 楊湘豐
Hsiang-Fong Yang
關鍵字: 同步振動;鑄鐵;砂模;振動應力消除;Synchronous vibration;Cast iron;Sand mold;Vibration stress relief
引用: [1] https://www.moderncasting.com/ [2] H. T. Angus, Cast iron: physical and engineering properties, 2nd ed. boston, pp. 5-16, 1976 [3] M. C. Flemings, ' Solidification Processing', 1st Ed., McGraw-Hill, New York, pp.177-210, 1974. [4] R.W.G. Wyckoff, Crystal structures, 1st Ed , Inter science Publ, New York, pp.89, 1963. [5] D.M. Stefanescu, G. Alonso, P. Larra-naga, E. De la Fuente, and R. Suarez, 'On the crystallization of graphite from liquid iron-carbon-silicon melts,' Journal of Acta Materialia, Vol. 107, No. 1, pp. 102-126, 2016. [6] 賴耿陽,鑄造技術用書3-普通鑄鐵鑄物,復漢出版社,第11-182頁,民國66年。 [7] J. F. Janowak, and et al, A modern approach to alloying gray irons, AFS Trans, pp. 847, 1982. [8] L. Portelette, J. C. Roux, V. Robin, and E. Feulvarch, 'A gaussian surrogate model for residual stresses induced by orbital multi-pass TIG welding,' Computers & Structures, Vol. 183, pp. 27-37, 2017. [9] 趙維義、劉烈全,'局部低溫熱處理消除焊接殘餘應力方法研究',第29卷, 2001。 [10] C. R. Brooks, Heat treatment:structure and properties of nonferrous alloys, American Society for Metal, International, USA, pp. 106-114, 1992. [11] C. J. Peel, B. Evans, C. A. Baker, D. A. Bennett, and P. J. Gregson, 'The development and application of improved aluminum-lithium alloys, ' Proceeding of the second International Aluminum-Lithium Conference,' The Metallurgy Society of AIME, California USA, pp. 363-392, 1983. [12] J. W. Martin, Micro-mechanisms in particle-hardened alloys, Cambridge University Press, New York, pp. 10-78, 1980. [13] C. E. Deiter, Mechanical metallurgy, 3rd Ed., McGraw-Hill, New York, pp. 221-227, 1986. [14] S. Kou, Welding metallurgy, 2nd Ed, A John Wiley & Sons, INC, New Jersey, pp. 249-256, 2003. [15] 莊智程,'灰口鐵熱裂的冶金與製程分析',中央大學機械工程研究所碩士論文,2000年。 [16] 潘永寧、邱弘興、林文和、邱傳聖,鑄造學,高立書局,第145-158頁,民國94年。 [17] H. F. Bishop, C. G. Ackerlind, and W. S. Pellini, ' Metallurgy and Mechanics of Hot Tearing,' AFS Trans, Vol. 60, pp. 818, 1952. [18] C. F .Christopher, 'Hot Tearing Characteristics of Acid and Basic Steel Casting Determined By High Temperature Testing,' AFS Trans, Vol.64, pp. 293, 1957. [19] N. Marumoto, H. Kashimura, K. Yoshida, T. Toyoda, T. Okane, and M. Yoshida, 'Dynamic measurements of the load on gray cast iron castings and contraction of castings during cooling in furan sand molds,' Journal of Materials Processing Technology, Vol. 237, pp. 48–54, 2016. [20] 饒德林、陳立功、倪純珍、顧振波,'振動時效技術的研究狀況',銲接學報,第11期,第4-7頁,2004年。 [21] C. A. Walker, A. J. Waddell, and D. J. Johnston, 'Vibratory stress relief-an investigation of the underlying processes,' Journal of Process Mechanical Engineering, Vol. 209, No. E1, pp. 51-58, 1995. [22] A. S. M. Y. Munsi, A. J. Waddell, and C. A. Walker, 'Vibratory stress relief - An investigation of the torsional stress effect in welded shafts,' The Journal of Strain Analysis for Engineering Design, Vol. 36, No. 5, pp. 453-464, 2001. [23] A. G. Bodine, 'Method and device for mold casting utilizing sonic energization original filed,', U.S. Patent, No. 3,447,587, 1969. [24] G. Chirita, I. Stefanescu, D. Soares, and F.S. Silva, 'Influence of vibration on the solidification behaviour and tensile properties of an Al–18 wt%Si alloy,' Materials and Design, Vol. 30, No. 5, pp. 1575-1580, 2008. [25] A.N. Abd-El-Azim, 'Effect of low-frequency mechanical vibration on the structure of Al–Si eutectic alloy,' Metallurgical Transactions, Vol.3, No.5, pp.1313–1316, 1972. [26] C. Ruirun and Z. Deshuang, 'A novel method for grain refinement and microstructure modification in TiAl alloy by ultrasonic vibration,' Materials Science & Engineering: A, Vol. 653, No.20, pp. 23-26, 2016. [27] W. Abdul-Karem, N. Green, K. F. Al-Raheem and H. A. Hasa, 'Effect of vibration after filling on mechanical reliability in thin wall investment casting with fill ability filling regime,' The International Journal of Advanced Manufacturing Technology, Vol. 67, pp2075-2082, 2013. [28] P. Sedek and M. S. Weglowski, 'Application of mechanical vibration in the machine building technology,' Key Engineering Materials, Vol. 504-506, pp. 1383-1388, 2012. [29] G. August and J. Hebel, 'Subresonant vibrations relieve residual stress,' Metal Progress, Vol.128, pp. 51-55, 1985. [30] http://www.bonal.com/tech/tech.html [31] 王家祥,'振動對FCC、BCC與HCP金屬材料的影響',中興大學材料科學與工程研究所博士論文,2015年。 [32] J. S. Wang, C. W. Kuo, C. C. Hsieh, H. C. Liao, and W. Wu, 'The effects of waveform in residual stress relief by vibration technique,' Trends in Welding Research - Proceedings of the 9th International Conference, June, pp. 427-437, 2012. [33] T. Breczko, 'X-Ray measurement of residual stress,' Wear, Vol. 82, pp. 27-35, 1982. [34] K. Moussaoui, S. Segonds, W. Rubio, and M. Mousseigne, 'Studying the measurement by X-ray diffraction of residual stresses in Ti6Al4V titanium alloy,' Materials Science and Engineering: A, Vol. 667, No.14, pp. 340-348, 2016. [35] T. Kondoh, T. Goto, T. Sasaki, and Y. Hirose, 'X-ray stress measurement for titanium aluminide intermetallic compound,' Advances in X-Ray Analysis, Vol. 43, pp. 107-116, 2000. [36] T. Sasaki and Y. Hirose, 'Single incidence X-ray stress measurement for all plane stress components using imaging plate of two-dimensional X-ray detector,' Journal of the Society of Materials Science Japan, Vol. 44, No. 504, pp. 1138-1143, 1995. [37] S. Taira, K. Tanaka, and T. Yamazaki, 'A method of X-Ray microbeam measurement of local stress and its application to fatigue crack growth problems,' Journal of the Society of Materials Science Japan, Vol. 27, No. 294, pp. 251, 1978. [38] T. Sasaki, Y. Hirose, K. Sasaki, and S. Yasukawa, 'Influence of image processing conditions of Debye Scherrer ring images in X-ray stress measurement using an imaging plate,' Advances in X-Ray Analysis, pp. 40-46, 1997. [39] http://www.pulstec.co.jp/en/pr/xray/pr_x01_02.html [40] J.R. Davis,, ASM Specialty Handbook Cast Irons, Metals Park, OH, USA, pp. 6, 1996. [41] W. Q. Zou, Z. G. Zhang, H. Yang, and W. Li, 'Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting, ' Research & Development, Vol. 13, No. 4, pp. 248-255, 2016. [42] M. G. Xie, 'Thermal analysis on solidification behaviors of hypoeutectic grey iron in lost foam casting', Applied Mechanics and Materials, Vol. 633-634, pp. 201-208, 2014. [43] S. Stan, M. Chisamera, I. Riposan, and M. Barstow, 'Application of thermal analysis to monitor the quality of hypoeutectic cast irons during solidification in sand and metal moulds,' Central European Energy Conference, Budapest, Hungary, October, pp. 1185-1192, 2011. [44] M. Chisamera, S. Stan, I. Riposan, E. Stefan, and G. Costache, 'Thermal analysis of inoculated grey cast irons,' Metallurgy and Materials Science, Vol. 83, No. 2, pp. 12-16, 2008. [45] S. Stan, M. Chisamera, I. Riposan, and M. Barstow, 'Application of thermal analysis to monitor the qualityof hypoeutectic cast irons during solidification in sand and metal moulds,' Journal of Thermal Analysis and Calorimetry, Vol. 110, pp. 1185-1192, 2012. [46] J. M. Radzikowska, ASM Handbook vol.9, Metallography and Microstructures, 1st Ed, Metals Park, OH, USA, pp. 566-587, 2004. [47] 劉興祥、劉興輝,'鑄件殘留應力的消除',鑄造技術,第9期,2011。 [48] 中國機械工程學會鑄造產業學會,鑄造手冊,機械工業出版社,第8-451頁,第1卷,1997年。 [49] R. Abbaschian, L. Abbaschian, and R. E. R.Hill, Physical metallurgy Principles 4st Ed., Cengage Learning Asia Pte. Ltd, pp. 259-373, 2010. [50] A. Mazur, M. M. Gasik, and V. I. Mazur, 'Thermal analysis of eutectic reactions of white cast irons,' Scandinavian Journal of Metallurgy, Vol. 34, pp. 245–249, 2005. [51] K. He, A. Brown, R. Brydson, and D. Edmonds, 'Analytical electron microscope study of the dissolution of the Fe3C iron carbide phase (cementite) during a graphitization anneal of carbon steel,' Journal of Mater Science, Vol. 41, No. 16, pp. 5235-5241, 2006. [52] D.D. Double and A. Hellawell, 'Growth structure of various forms of graphite, in:B. Lux,' The Metallurgy of Cast Iron, Georgi Publishing Co, St Saphorin, Switzerland, pp. 509-528, 1975. [53] D.M. Stefanescu, G. Alonso, P. Larranaga, E. De la Fuente, and R. Suarez 'Reexamination of crystal growth theory of graphite in iron-carbon alloys,' Journal of Acta Materialia, Vol. 139, pp. 109-121, 2017.
摘要: 
本研究導入同步振動技術來優化亞共晶鑄鐵的顯微結構特徵,並結合不同溫度下的振動應力消除技術,來探究溫度對應力消除之影響。本研究使用CE值=3.9(3.6%C ,1.0%Si)的鐵-碳-矽合金,在1350°C進行澆鑄,利用具備高頻特徵在不同激振力的振動條件下凝固至600°C,並對鑄鐵凝固過程進行熱分析與觀察鑄態下各相的分佈、成份與孔隙率進行討論,最後以鑄態組織較佳者進行模內應力消除。實驗結果表明隨著激振力與主波振幅增加,則冷卻曲線所得之最低共晶溫度、凝固和凝固結束溫度有明顯降低趨勢。當振動條件為38 Hz-L時,高頻次波振幅達主波1/2,與未振動者相比較,最低共晶過冷溫度略降、共晶反應時間變長、固液共存區溫度差減少7.4°C。在各相區石墨共晶胞與白口組織中的碳、矽重量百分比差異得知,碳由14.32%縮減至11.77%,矽由0.16%縮減至0.06%。38Hz-L同步振動鑄造技術可有效改善鑄件斷面組織的均勻性,消除鑄造過程中的反冷現像,使石墨共晶胞均勻分佈,並得到孔隙率最優之鑄件。
利用具低激振力且具高頻波之主波頻率38 Hz-L同步振動製程進行鑄鐵在CO2 鑄模鑄造的組織優化,並結合不同溫度下,含100°C、200°C、300°C、400°C等,進行模內振動應力消除製程,探討不同振動製程對鑄鐵件之顯微結構特徵與機械性質。由SEM觀察結果證實,無振動與同步振動製程之鑄件,顯微結構皆由白鑄鐵組織(雪明碳鐵+波來鐵+粒滴斑鐵)與石墨共晶區(石墨+波來鐵)所構成,當進行不同溫度之振動應力消除製程時,則試桿中心石墨共晶區之波來鐵的不穩定雪明碳鐵與外圍過飽和碳化物會消失與細化,而顯著降低鑄件的硬度特性。由X-ray應力量測結果得知經38 Hz-L同步振動製程之鑄件殘留沃斯田鐵及應力值高達3.4%及197MPa,而再經200°C~400°C的振動應力消除製程之鑄件擁有最低的殘留量為0.9~1.4%及90~95 MPa。當振動製程條件為同步振動且在200°C下進行振動應力消除時效果近似低溫退火,可使鑄造狀態之淬火組織具備最低應力值、獲得最均勻之鑄件硬度分佈及最佳強度值407.2MPa。

This study introduces the synchronous vibration technique which optimizes the microstructure characteristics of hypoeutectic cast iron. It combines vibration stress reliefs at different temperatures to effect the temperature on stress relief. In this study, an iron-carbon-silicon alloy with a CE value of 3.9 (3.6% C, 1% Si) is casted at 1350 ° C. The alloy is solidified to 600 °C using high frequency vibration under different vibrational conditions, thermal analysis of cast iron solidification process and distribution, as well as composition and porosity of each phase in as-cast state. Finally, in the as-cast structure, the in-mold stress relief is performed at different temperatures. The thermal results show that as the excitation force and the amplitude of the main wave increase, the over-cooling temperature, the solidification and the solidification ending temperature of the eutectic obtained by the cooling curve decrease remarkably. When the vibration condition is 38Hz-L, the high frequency wave reaches 1/2 of the main wave.
Comparing with the non-vibration hypoeutectic cast iron, the minimum eutectic over-cooling temperature decreases slightly, the eutectic reaction time becomes longer, and the temperature difference in the solid-liquid coexistence zone decreases by 7.4 °C. The difference in the weight percentage of carbon and ruthenium between the graphite eutectic cells and the white-mouth tissue in each phase region shows that the carbon is reduced from 14.32% to 11.77%, and the enthalpy is reduced from 0.16% to 0.06%. The 38 Hz-L synchronous vibration casting technique can effectively improve the uniformity of the cross-section structure of the casting, eliminate the anti-cold phenomenon in the casting process, make the graphite eutectic cells evenly distributed, and obtain the casting with the best porosity.
Accordingly, the result demonstrates the main wave frequency of 38 Hz and a low excitation force to optimize the microstructure of cast iron part in the process of CO2 sand mold casting with synchronous vibration. It causes vibration stress in relief at different temperatures, including 100, 200, 300 and 400oC. This is to study the effects of various vibration processes on the microstructure characteristics and mechanical properties of cast iron parts. The results of observing using
SEM verify that the microstructures of the vibration-free and synchronous vibration process are all composed of white cast iron area (Cementite + Pearlite + Ledeburite) and graphite eutectic cell (Graphite + Pearlite).
The vibration stress relief process with various heat treatment temperatures leads to unstable cementite which is in the pearlite of graphite eutectic cell. Therefore, the pearlite can be transferred to the ferrite phase and the test sample of peripheral oversaturated carbides will be refined. It causes the significantly decreasing of hardness characteristics. It is found from the X-ray stress measurement that the cast iron part with the synchronous vibration process has the highest stress value of 197 MPa. And the cast iron part with the vibration stress relief process from 200 to 400oC has the lowest stress value about 90~95MPa. As the vibration process condition is synchronous vibration and 200 °C vibration stress relief, the cast iron part possesses the most uniform hardness distribution of the lowest stress property, the most suitable surface hardness and the best strength value is 407.2MPa.
URI: http://hdl.handle.net/11455/97839
Rights: 同意授權瀏覽/列印電子全文服務,2022-01-17起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-108-5102066002-1.pdf8.48 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.