Please use this identifier to cite or link to this item:
標題: 塗佈還原氧化石墨烯於陽極氣體擴散層以提升質子交換膜燃料電池之性能
Improvement of PEMFC Performance by Coating Reduced Graphene Oxide on the Anode Gas Diffusion Layer
作者: 張皓翔
Hao-Hsiang Chang
關鍵字: 質子交換膜燃料電池;觸媒層;氣體擴散層;還原氧化石墨烯;Proton exchange membrane fuel cell;Catalyst layer;Gas diffusion layer;Reduced graphene oxide
引用: [1]S. Shahgaldi and J. Hamelin, 'Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: A critical review,' Carbon N. Y., vol. 94, pp. 705–728, 2015. [2]K. K. Tintula, A. Jalajakshi, A. K. Sahu, S. Pitchumani, P. Sridhar, and A. K. Shukla, 'Durability of Pt/C and Pt/MC-PEDOT catalysts under simulated start-stop cycles in polymer electrolyte fuel cells,' Fuel Cells, vol. 13, no. 2, pp. 158–166, 2013. [3]X. Zhou, 'A review of hollow Pt-based nanocatalysts applied in proton exchange membrane fuel cells,' J. Power Sources, vol. 232, pp. 310–322, 2013. [4]黃鎮江, 燃料電池. 全華科技圖書公司,2005. [5]J. M. Andújar and F. Segura, 'Fuel cells: History and updating. A walk along two centuries,' Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 2309–2322, 2009. [6]O. Z. Sharaf and M. F. Orhan, 'An overview of fuel cell technology: Fundamentals and applications,' Renew. Sustain. Energy Rev., vol. 32, pp. 810–853, 2014. [7]U. Lucia, 'Overview on fuel cells,' Renew. Sustain. Energy Rev., vol. 30, pp. 164–169, 2014. [8]P. Kurzeil, 'Fuel cells.,' Elsevier, pp. 579–595, 2009. [9]B. Viswanathan, 'Fuel Cells,' Energy Sources, pp. 329–356, 2017. [10]P. Costamagna, 'Modeling,' Encycl. Electrochem. Power Sources, pp. 309–320, 2009. [11]S. Mekhilef, R. Saidur, and A. Safari, 'Comparative study of different fuel cell technologies,' Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 981–989, 2012. [12]熊居政, '奈米化白金觸媒在燃料電池之電極材料上佈置方法及電化學測試之研究,' 2004. [13]Dr. Veretta J. Sabb, 'Designing Fuel Cells for Improved Transportation Safety and Security,' 2003. [14]R. E. Rosli, 'The design and development of an HT-PEMFC test cell and test station,' Int. J. Hydrogen Energy, pp. 1–9, 2018. [15]T. Kitahara, H. Nakajima, and K. Okamura, 'Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions,' J. Power Sources, vol. 283, pp. 115–124, 2015. [16]A. Arvay, 'Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells - A review,' J. Power Sources, vol. 213, pp. 317–337, 2012. [17]S. Park, J. W. Lee, and B. N. Popov, 'A review of gas diffusion layer in PEM fuel cells: Materials and designs,' Int. J. Hydrogen Energy, vol. 37, no. 7, pp. 5850–5865, 2012. [18]L. Cindrella, 'Gas diffusion layer for proton exchange membrane fuel cells-A review,' J. Power Sources, vol. 194, no. 1, pp. 146–160, 2009. [19]J. M. Morgan and R. Datta, 'Understanding the gas diffusion layer in proton exchange membrane fuel cells. I. How its structural characteristics affect diffusion and performance,' J. Power Sources, vol. 251, pp. 269–278, 2014. [20]M. S. Ismail, T.Damjanovic, D. B. Ingham, M. Pourkashanian, and A. Westwood, 'Effect of polytetrafluoroethylene-treatment and microporous layer-coating on the electrical conductivity of gas diffusion layers used in proton exchange membrane fuel cells,' J. Power Sources, vol. 195, no. 9, pp. 2700–2708, 2010. [21]C. J. Tseng and S. K. Lo, 'Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC,' Energy Convers. Manag., vol. 51, no. 4, pp. 677–684, 2010. [22]O. M. Orogbemi,D. B. Ingham,M. S. Ismail,K. J. Hughes, L. Ma, and M. Pourkashanian, 'The effects of the composition of microporous layers on the permeability of gas diffusion layers used in polymer electrolyte fuel cells,' Int. J. Hydrogen Energy, vol. 41, no. 46, pp. 21345–21351, 2016. [23]J. T. Gostick, M. A. Ioannidis, M. W. Fowler, and M. D. Pritzker, 'On the role of the microporous layer in PEMFC operation,' Electrochem. commun., vol. 11, no. 3, pp. 576–579, 2009. [24]M. Sun, 'CO-tolerant PtRu@h-BN/C core–shell electrocatalysts for proton exchange membrane fuel cells,' Appl. Surf. Sci., vol. 450, pp. 244–250, 2018. [25]N. Rajalakshmi and K. S. Dhathathreyan, 'Catalyst layer in PEMFC electrodes-Fabrication, characterisation and analysis,' Chem. Eng. J., vol. 129, no. 1–3, pp. 31–40, 2007. [26]Q. Duan, H. Wang, and J. Benziger, 'Transport of liquid water through Nafion membranes,' J. Memb. Sci., vol. 392–393, pp. 88–94, 2012. [27]O. Paola and S. Supramaniam, 'Quabtum jumps in the PEMFC science and technology from the 1960s to the year 2000:Part I.Fundamental scientific aspects,' J.Power Sources, vol. 102, p. P242, 2001. [28]C. S. Tsao, H. L. Chang, U. S. Jeng, J. M. Lin, and T. L. Lin, 'SAXS characterization of the Nafion membrane nanostructure modified by radiation cross-linkage,' Polymer (Guildf)., vol. 46, no. 19 SPEC. ISS., pp. 8430–8437, 2005. [29]S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, 'Review of the proton exchange membranes for fuel cell applications', vol. 35, no. 17. Elsevier Ltd, 2010. [30]A. Chandan, 'High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-A review,' J. Power Sources, vol. 231, pp. 264–278, 2013. [31]D. J. Kim, M. J. Jo, and S. Y. Nam, 'A review of polymer-nanocomposite electrolyte membranes for fuel cell application,' J. Ind. Eng. Chem., vol. 21, pp. 36–52, 2015. [32]黃鎮江, 燃料電池(第三版). 滄海書局, 2008. [33]衣寶廉, 燃料電池-原理與應用, 五南圖書出版社. 2005. [34]D. He, K. Cheng, T. Peng, M. Pan, and S. Mu, 'Graphene/carbon nanospheres sandwich supported PEMfuel cell metal nanocatalysts with remarkably high activity and stability,' J. Mater. Chem. A, vol. 1, no. 6, pp. 2126–2132, 2013. [35]C. S. M. C. Prado.Burguete, A. L. Solano, and F. R. Reinoso, 'The effect of oxygen surface groups of the support on platinum dispersion in Pt/carbon catalysts,' J. Catal., vol. 115, no. 1, p. pp98-106, 1989. [36]A. G. Osorio,I. C. L. Silveira, V. L. Bueno, and C. P.Bergmann, 'H2SO4/HNO3/HCl-Functionalization and its effect on dispersion of carbon nanotubes in aqueous media,' Appl. Surf. Sci., vol. 255, no. 5 PART 1, pp. 2485–2489, 2008. [37]L. R. R. C. A. Leon, 'Chemistry and physics of carbon,' New York, p. p213, 1994. [38]S. Irmak, B. Meryemoglu, B. K. Ozsel, A. Hasanoglu, and O. Erbatur, 'Improving activity of Pt supported metal catalysts by changing reduction method of Pt precursor for hydrogen production from biomass,' Int. J. Hydrogen Energy, vol. 40, no. 43, pp. 14826–14832, 2015. [39]A. Esmaeilifar, S. Rowshanzamir, M. H.Eikani, and E. Ghazanfari, 'Synthesis methods of low-Pt-loading electrocatalysts for proton exchange membrane fuel cell systems,' Energy, vol. 35, no. 9, pp. 3941–3957, 2010. [40]L. M. Esteves, H. A. Oliveira, and F. B. Passos, 'Journal of Industrial and Engineering Chemistry Carbon nanotubes as catalyst support in chemical vapor deposition reaction : A review,' J. Ind. Eng. Chem., 2018. [41]A. Bayrakçeken , 'Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique,' J. Power Sources, vol. 179, no. 2, pp. 532–540, 2008. [42]F. Wu, Y. Liu, and C. Wu, 'Preparation of Pt/C Nanocatalysts by Ethylene Glycol Method in Weakly Acidic Solutions,' J. Mater. Sci. Technol., vol. 26, no. 8, pp. 705–710, 2010. [43]B. Meryemoglu, S. Irmak, A. Hesenov, and O. Erbatur, 'Preparation of activated carbon supported Pt catalysts and optimization of their catalytic activities for hydrogen gas production from the hydrothermal treatment of biomass-derived compounds,' Int. J. Hydrogen Energy, vol. 37, no. 23, pp. 17844–17852, 2012. [44]X. Li and I. M. Hsing, 'The effect of the Pt deposition method and the support on Pt dispersion on carbon nanotubes,' Electrochim. Acta, vol. 51, no. 25, pp. 5250–5258, 2006. [45]S. Song, Z. Sheng, Y. Liu, H. Wang, and Z. Wu, 'Influences of pH value in deposition-precipitation synthesis process on Pt-doped TiO2 catalysts for photocatalytic oxidation of NO,' J. Environ. Sci. (China), vol. 24, no. 8, pp. 1519–1524, 2012. [46]H. Kim, J. N. Park, and W. H. Lee, 'Preparation of platinum-based electrode catalysts for low temperature fuel cell,' Catal. Today, vol. 87, no. 1–4, pp. 237–245, 2003. [47]C. Bock, C. Paquet, M.Couillard, G. A. Botton, and B. R. MacDougall, 'Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism,' J. Am. Chem. Soc., vol. 126, no. 25, pp. 8028–8037, 2004. [48]黃婕芸, '以水熱法擔載鉑觸媒於不同碳材之研究及其在直接甲醇燃料電池之應用,' 國立成功大學材料科學與工程學系, 2011. [49]S. A. Lee, K. W. Park, J. H. Choi, B. K. Kwon, and Y. E. Sung, 'Nanoparticle Synthesis and Electrocatalytic Activity of Pt Alloys for Direct Methanol Fuel Cells,' J. Electrochem. Soc., vol. 149, no. 10, p. A1299, 2002. [50]T. Teranishi, M. Hosoe, T. Tanaka, and M. Miyake, 'Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition,' J. Phys. Chem. B, vol. 103, no. 19, pp. 3818–3827, 1999. [51]J. A. Gerbec, D. Magana, A. Washington, and G. F. Strouse, 'Microwave-enhanced reaction rates for nanoparticle synthesis,' J. Am. Chem. Soc., vol. 127, no. 45, pp. 15791–15800, 2005. [52]M. G. L.L.Zhaolin,L.Y.Jim,C.Weixiang,and H.Ming, 'Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles,' Langmuir, vol. 20, p. PP181-187, 2004. [53]B. L. Hayes, 'Microwave synthesis chemistry at speed of light, ' CEM Publishing, 2002. [54]J. Prabhuram, X. Wang, C. L. Hui, and I. M. Hsing, 'Synthesis and Characterization of Surfactant-Stabilized Pt/C Nanocatalysts for Fuel Cell Applications,' J. Phys. Chem. B, vol. 107, no. 40, pp. 11057–11064, 2003. [55]L. D. Landau, 'Zur theorie der phasenumwandlungen II,' Phys. Zeitschrift der Sowjetunion, vol. 11, p. PP26-35, 1937. [56]L. D. Landau, 'Statistical physics part I,' Pergamon:Oxford, p. section137 and138, 1980. [57]K. S. Novoselov, 'Electric Field Effect in Atomically Thin Carbon Films,' Science, vol. 306, no. 5696, pp. 666–669, 2004. [58]C. B. Clemons, M. W. Roberts, J. P. Wilber, G. W. Young, A. Buldum, and D. D. Quinn, 'Continuum plate theory and atomistic modeling to find the flexural rigidity of a graphene sheet interacting with a substrate,' J. Nanotechnol., no. January 2010, 2010. [59]K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, 'Measurement of the Optical Conductivity of Graphene,' vol. 196405, no. November, pp. 2–5, 2008. [60]M. S. F. J. H. Chen, C. Jang, S. Xiao, and M. Ishigami, 'Intrinsic and extrinsic performance limits of graphene devices on SiO2,' Nat. Nanotechnol., vol. 3, p. pp.206-209, 2008. [61]C. Lee, X. Wei, J. W. Kysar, and J. Hone, 'Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,' Science (80-. )., vol. 321, no. July, pp. 385–388, 2008. [62]Etalasha Stankovich, Dmitriy A. Dikin, Geoffrey H B Dommett, 'Graphene-based composite materials,' Nature, vol. 442, no. 7100, p. pp.282-286, 2006. [63]J. Hass, W. A. DeHeer, and E. H. Conrad, 'The growth and morphology of epitaxial multilayer graphene,' J. Phys. Condens. Matter, vol. 20, no. 32, 2008. [64]B. C. Brodie, 'On the Atomic Weight of Graphite,' Philos. Trans. R. Soc. London, ' vol. 149, no. 0, pp. 249–259, 1859. [65]L. Staudenmaier,'Verfahren zur Darstellung der Graphitsäure,' Ber.Dtsch.Chem.Ges, vol. 31, no. pp1481-1487, 1898. [66]W. Hummers and R. Offeman, 'Preparation of graphitic oxide,' J. Am. Chem. Soc., vol. 80, no. 6, p. pp1339-1339, 1958. [67]E. Antolini, 'Graphene as a new carbon support for low-temperature fuel cell catalysts,' Appl. Catal. B Environ., vol. 123–124, pp. 52–68, 2012. [68]M. Sohail, M. Saleem, S. Ullah, N. Saeed, A. Afridi, and M. Khan, 'Modified and improved Hummer's synthesis of graphene oxide for capacitors applications,' Mod. Electron. Mater., vol. 3, no. July, pp. 110–116, 2017. [69]T. Rattana, 'Preparation and characterization of graphene oxide nanosheets,' Procedia Eng., vol. 32, pp. 759–764, 2012. [70]A. Alazmi, S. Rasul, S. P. Patole, and P. M. F. J. Costa, 'Comparative study of synthesis and reduction methods for graphene oxide,' Polyhedron, vol. 116, pp. 153–161, 2016. [71]M. Ghorbani, H. Abdizadeh, and M. R. Golobostanfard, 'Reduction of Graphene Oxide via Modified Hydrothermal Method,' Procedia Mater. Sci., vol. 11, no. 2009, pp. 326–330, 2015. [72]黃昆輝, 橡膠工業世界(Rubber Industries Handbook). 1995. [73]M. Wang, 'Observation of plasma-treatedcarbon black surfaces by scanning tunnelling microscopy,' Carbon, vol. 32, no. 2, pp. 199–206, 1994. [74]S. J. Park, M. K. Seo, C. Nah, 'Influence of surface characteristics of carbon blacks on cure an mechanical behaviors of rubber matrix compoundings,' J. Colloid Interface Sci, vol. 291, pp. 229–235, 2005. [75]D. B. Mawhinney and J. T. Yates, 'FTIR study of the oxidation of amorphous carbon by ozone at 300 K--Direct COOH formation,' Carbon N. Y., vol. 39, pp. 1167–1173, 2001. [76]F. Xiao, A. H. Bedane, J. X. Zhao, M. D. Mann, and J. J. Pignatello, 'Thermal air oxidation changes surface and adsorptive properties of black carbon (char/biochar),' Sci. Total Environ., vol. 618, pp. 276–283, 2018. [77]C. Alegre, M. E. Gálvez, E. Baquedano, E. Pastor, R. Moliner, and M. J. Lázaro, 'Influence of support's oxygen functionalization on the activity of Pt/carbon xerogels catalysts for methanol electro-oxidation,' Int. J. Hydrogen Energy, vol. 37, no. 8, pp. 7180–7191, 2012. [78]M. Ciobanu, A. M. Lepadatu, and S. Asaftei, 'Chemical and Electrochemical Studies of Carbon Black Surface by Treatment with Ozone and Nitrogen Oxide,' Mater. Today Proc., vol. 3, pp. S252–S257, 2016. [79]黃榮鑫, '質子交換膜燃料電池之高分散Pt/C電極觸媒製備研究,' 2010. [80]J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, 'Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide,' Langmuir, vol. 25, no. 10, pp. 5957–5968, 2009. [81]Lin Z., 'Functionalized graphene for energy storage and conversion,' 2014. [82]Tian-You Zhangdong Zhang, 'Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication,' Bull Mater Sci, vol. 34, no. 1, pp. 25–28, 2011. [83]H. Guo, X. Wang, Q. Qian, F. Wang, and X. Xia, 'A Green Approach to the Synthesis of Graphene Nanosheets,' ACS Nano, vol. 3, no. 9, pp. 2653–2659, 2009. [84]A. A. Shahriary L, 'Graphene oxide synthesized by using modified hummers approach.,' Int J Renew Energy Env. Eng, vol. 2, pp. 58–63, 2014. [85]N. I. Zaaba, K. L. Foo, U.Hashim, S. J. Tan, W. W. Liu, and C. H. Voon, 'Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence,' Procedia Eng., vol. 184, pp. 469–477, 2017. [86]T. F. Emiru and D. W. Ayele, 'Controlled synthesis, characterization and reduction of graphene oxide: A convenient method for large scale production,' Egypt. J. Basic Appl. Sci., vol. 4, no. 1, pp. 74–79, 2017.
質子交換膜燃料電池具有高轉換效率、能量密度很高、操作快速容易、零污染等優點。但一般燃料電池的製作仍須要克服很多挑戰,如觸媒分散性不佳、白金價格昂貴、水管理不容易掌握等都是造成PEMFC效能無法提升的問題之一,因此研究第一部分主要探討如何增加Pt在碳黑載體上的分散性,本研究使用雙氧水對碳黑表面進行表面改質,使碳黑表面佈滿含氧官能基,增加碳黑在水中的分散性,由XRD圖可以看到Pt晶粒尺寸從6.56 nm減小到4.26 nm,TEM圖則證實確實有助於減少Pt團聚現象的發生,因而提高了電池的輸出功率。
第三部分主要會去探討在陽極氣體擴散層上塗佈石墨烯來改善水管理,且利用石墨烯高導電率的特性來降低極化現象的發生,由接觸角分析結果發現隨還原氧化石墨烯塗佈量增加接觸角有下降的趨勢,表示親水性增加,能達到潤濕的效果幫助氫離子傳遞,在65 ℃操作溫度下,塗佈2.52mg/cm2還原氧化石墨烯的電流密度由0.395 W/cm2增加為0.538 W/cm2,證實塗佈還原氧化石墨烯於氣體擴散層上,確實有助於效率的提升。

Proton exchange membrane fuel cells have the advantages of high conversion efficiency, high energy density, fast and easy operation, and zero pollution. However, the production of fuel cells still needs to overcome many challenges. The poor dispersion of catalysts, the high price of platinum, and the difficulty in mastering water management are all problems that cannot improve the performance of PEMFC. Therefore, the first part of the experiment will mainly discuss how to increase the dispersibility of Pt particles on the carbon black carrier. In this study, the surface of carbon black was surface-modified with hydrogen peroxide, and the surface of carbon black was filled with oxygen-containing functional groups to increase the dispersibility of carbon black in water. From the XRD pattern, the Pt particle size decreases from 6.56 nm to 4.26 nm.It was confirmed that the surface treatment of carbon black by hydrogen peroxide really reduce the occurrence of Pt agglomeration.
The second part will combine the one-dimensional carbon black structure with two-dimensional graphene to form a new 3D composite structure. It is expected that the high specific surface area of graphene will increase the dispersion of carbon black and make Pt more distributed during reduction. However, it was found by SEM and TEM that agglomeration occurred, and the current density decreased with the increase of graphene addition, mainly due to the poor interaction between graphene and Pt.
The third part will mainly discuss the coating of graphene on the anode gas diffusion layer to improve water management and use the high conductivity of graphene to reduce the occurrence of polarization. From the contact angle analysis results, it is found that the contact angle decreases with the increase of the amount of reduced graphene oxide coating, indicating that the hydrophilicity is increased, and the wetting effect can be achieved to help the hydrogen ion transfer. At 65°C operating temperature, the power density of coating 2.52mg/cm2 reduced graphene oxide increased from 0.395 W/cm2 to 0.538 W/cm2. It was confirmed that coating graphene oxide on anode gas diffusion layer can really increase efficiency.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066026-1.pdf5.07 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.