Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97843
標題: 多元FCC合金固溶限的預測
Prediction of solid solution limit in multicomponent FCC alloys
作者: 張庭
Ting Chang
關鍵字: 多元合金;固溶限;multicomponent alloys;solid solubility limit
引用: 第二章 1. Tsai, M.-H. and J.-W. Yeh. Materials Research Letters, 2014. 2(3): p. 107-123. 2. Yeh, J.W., et al. Advanced Engineering Materials, 2004. 6(5): p. 299-303. 3. Zhang, Y., et al. Advanced Engineering Materials, 2008. 10(6): p. 534-538. 4. Massalski, T. Physical metallurgy, 1996. 1: p. 135-204. 5. Waber, J., et al. 1962, Los Alamos Scientific Lab., N. Mex. 6. Hume-Rothery, W. 1961. 7. Gelatt, C. and L. Bennett TMS, Warrendale, PA, 1980: p. 451. 8. Liu, W., et al. Jom, 2014. 66(10): p. 1973-1983. 9. Sheng, G. and C.T. Liu. Progress in Natural Science: Materials International, 2011. 21(6): p. 433-446. 10. Guo, S., et al. Intermetallics, 2013. 41: p. 96-103. 11. Yang, X. and Y. Zhang. Materials Chemistry and Physics, 2012. 132(2-3): p. 233-238. 12. Singh, A.K., et al. Intermetallics, 2014. 53: p. 112-119. 13. Wang, Z., et al. Scripta Materialia, 2015. 94: p. 28-31. 14. Ye, Y., et al. Scripta Materialia, 2015. 104: p. 53-55. 15. Troparevsky, M.C., et al. Physical Review X, 2015. 5(1): p. 011041. 16. Senkov, O. and D. Miracle. Journal of Alloys and Compounds, 2016. 658: p. 603-607. 17. Zhang, F., et al. Calphad, 2014. 45: p. 1-10. 18. Chou, K.C. and Y. Austin Chang. Berichte der Bunsengesellschaft für physikalische Chemie, 1989. 93(6): p. 735-741. 19. Senkov, O., et al. Nature communications, 2015. 6: p. 6529. 20. 李建宏. 中興大學材料科學與工程學系所學位論文, 2017: p. 1-139. 21. Gao, M., et al. Jom, 2015. 67(11): p. 2653-2669. 22. Liu, W., et al. Acta Materialia, 2016. 116: p. 332-342. 23. Niessen, A.K. and A.R. Miedema. Berichte der Bunsengesellschaft für physikalische Chemie, 1983. 87(9): p. 717-725. 24. King, H. Journal of Materials Science, 1966. 1(1): p. 79-90. 25. Miedema, A., P. De Chatel, and F. De Boer. Physica B+ c, 1980. 100(1): p. 1-28. 26. Kittel, C., P. McEuen, and P. McEuen. Vol. 8. 1996: Wiley New York. 27. Senkov, O. and D. Miracle. Materials Research Bulletin, 2001. 36(12): p. 2183-2198. 28. Eshelby, J. 1956, Elsevier. p. 79-144. 29. Massalski, T.B. and H.W. King. Progress in Materials Science, 1963. 10: p. 3-78. 30. Hu, Q., et al. Scientific reports, 2017. 7: p. 39917. 第三章 1. 李建宏. 中興大學材料科學與工程學系所學位論文, 2017: p. 1-139. 2. Massalski, T.B. and H.W. King. Progress in Materials Science, 1963. 10: p. 3-78. 3. King, H. Journal of Materials Science, 1966. 1(1): p. 79-90. 4. Cullity, B.D. and S.R. Stock. 2014: Pearson Education. 5. Greenwood, N.N. and A. Earnshaw. 2012: Elsevier. 6. Kittel, C., P. McEuen, and P. McEuen. Vol. 8. 1996: Wiley New York. 7. Senkov, O. and D. Miracle. Materials Research Bulletin, 2001. 36(12): p. 2183-2198. 8. Miedema, A., P. De Chatel, and F. De Boer. Physica B+ c, 1980. 100(1): p. 1-28. 第四章 1. 李建宏. 中興大學材料科學與工程學系所學位論文, 2017: p. 1-139. 第五章 1. Zhang, Y., et al. Advanced Engineering Materials, 2008. 10(6): p. 534-538. 2. Sheng, G. and C.T. Liu. Progress in Natural Science: Materials International, 2011. 21(6): p. 433-446. 3. Guo, S., et al. Intermetallics, 2013. 41: p. 96-103. 4. Wang, Z., S. Guo, and C.T. Liu. JOM, 2014. 66(10): p. 1966-1972. 5. Ren, M.-x., B.-s. Li, and H.-z. Fu. Transactions of Nonferrous Metals Society of China, 2013. 23(4): p. 991-995. 6. Yang, X. and Y. Zhang. Materials Chemistry and Physics, 2012. 132(2-3): p. 233-238. 7. Poletti, M. and L. Battezzati. Acta Materialia, 2014. 75: p. 297-306. 8. Wang, Z., et al. Scripta Materialia, 2015. 94: p. 28-31. 9. Singh, A.K., et al. Intermetallics, 2014. 53: p. 112-119. 10. Ye, Y., et al. Scripta Materialia, 2015. 104: p. 53-55. 11. King, D., et al. Acta Materialia, 2016. 104: p. 172-179. 12. 李建宏. 中興大學材料科學與工程學系所學位論文, 2017: p. 1-139. 13. Troparevsky, M.C., et al. Physical Review X, 2015. 5(1): p. 011041. 14. Senkov, O. and D. Miracle. Journal of Alloys and Compounds, 2016. 658: p. 603-607. 15. Eshelby, J. 1956, Elsevier. p. 79-144. 16. King, H. Journal of Materials Science, 1966. 1(1): p. 79-90. 17. Tsai, M.-H., A.-C. Fan, and H.-A. Wang. Journal of Alloys and Compounds, 2017. 695: p. 1479-1487. 18. Miedema, A., P. De Chatel, and F. De Boer. Physica B+ c, 1980. 100(1): p. 1-28. 19. Hume-Rothery, W. 1961. 20. Raynor, G. Transactions of the Faraday Society, 1949. 45: p. 698-708. 21. Hu, Q., et al. Scientific reports, 2017. 7: p. 39917.
摘要: 
本研究探討不同元素在多元FCC合金中的固溶情形。除探討實際固溶限外,尚檢驗了文獻中已發表的八種具代表性的固溶限預測模型,並評估準確程度。其中,準確度最高的模型預測鑄造態、800˚C與均質化態固溶限的平均絕對誤差分別為16.1 at.%、17.6 at.%及17.8 at.%。接著,本研究修正並改良了本實驗室先前所提出之模型。結果顯示,本研究模型預測鑄造態、800˚C與均質化態固溶限的平均絕對誤差分別為2.4 at.%、3.3 at.%及3.9 at.%,相較於現有模型,準確度已有大幅進展。除此之外,本研究亦量測了不同元素在多元FCC合金中的有效體積與有效半徑,以探討不同元素固溶於多元FCC合金時原子尺寸變化的情形。

This work explores the solid solution behavior of different elements in multicomponent FCC alloys. In addition to actual solid solubility limit, this work still verifies the accuracy of eight representative existing models. Among these models, average absolute errors (MAE) of the model with the highest accuracy in predicting cast alloys, alloys annealed at 800˚C and homogeneous alloys are 16.1 at.%, 17.6 at.% and 17.8 at.%. Then, this work revises the model that proposed by Jian-Hong Li. The results show that MAE of our model in predicting cast alloys, alloys annealed at 800˚C and homogeneous alloys are 2.4 at.%, 3.3 at.% and 3.9 at.%. Comparing with existing models, our model has significantly better accuracy. In addition, this work measures effective volume of different elements in multicomponent FCC alloys to explore the variety of atomic size in solid solutions.
URI: http://hdl.handle.net/11455/97843
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066001-1.pdf13.36 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.