Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorTsung-Chen Taien_US
dc.identifier.citation1. G. M. Whitesides, B. Grzybowski, Self-assembly at all scales. Science 295, 2418-2421 (2002). 2. G. A. Ozin, Nanochemistry: synthesis in diminishing dimensions. Advanced Materials 4, 612-649 (1992). 3. M. W. Matsen, M. Schick, Self-assembly of block copolymers. Current Opinion in Colloid & Interface Science 1, 329-336 (1996). 4. V. Castelletto, I. W. Hamley, Morphologies of block copolymer melts. Current Opinion in Solid State and Materials Science 8, 426-438 (2004). 5. Y. Mai, A. Eisenberg, Self-assembly of block copolymers. Chemical Society Reviews 41, 5969-5985 (2012). 6. H. R. Thomas, J. J. O'Malley, Surface Studies on Multicomponent Polymer Systems by X-ray Photoelectron Spectroscopy. Polystyrene/Poly(ethylene oxide) Diblock Copolymers. Macromolecules 12, 323-329 (1979). 7. H. Yabu, T. Higuchi, H. Jinnai, Frustrated phases: polymeric self-assemblies in a 3D confinement. Soft Matter 10, 2919-2931 (2014). 8. T. Ellis, G. Shonaike, G. Simon, Polymer alloys and blends. Marcel Dekker Inc., New York, 209-233 (1999). 9. Z. Jin, H. Fan, Self-assembly of nanostructured block copolymer nanoparticles. Soft Matter 10, 9212-9219 (2014). 10. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing. science 220, 671-680 (1983). 11. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of state calculations by fast computing machines. The journal of chemical physics 21, 1087-1092 (1953). 12. X. He, M. Song, H. Liang, C. Pan, Self-assembly of the symmetric diblock copolymer in a confined state: Monte Carlo simulation. The Journal of Chemical Physics 114, 10510-10513 (2001). 13. 李世炳, 鄒忠毅, 簡介導引模擬退火法及其應用, 中央研究院物理研究所碩士論文, (2002). 14. M. S. Turner, Equilibrium properties of a diblock copolymer lamellar phase confined between flat plates. Physical Review Letters 69, 1788-1791 (1992). 15. B. Yu, P. Sun, T. Chen, Q. Jin, D. Ding, B. Li, A.-C. Shi, Confinement-Induced Novel Morphologies of Block Copolymers. Physical Review Letters 96, 138306 (2006). 16. L. Li, K. Matsunaga, J. Zhu, T. Higuchi, H. Yabu, M. Shimomura, H. Jinnai, R. C. Hayward, T. P. Russell, Solvent-driven evolution of block copolymer morphology under 3D confinement. Macromolecules 43, 7807-7812 (2010). 17. P. Chen, H. Liang, Cylinder-forming triblock terpolymer in nanopores: a Monte Carlo simulation study. The Journal of Physical Chemistry B 112, 1918-1925 (2008). 18. Q.-H. Hao, B. Miao, Q.-G. Song, X.-H. Niu, T.-J. Liu, Phase behaviors of sphere-forming triblock copolymers confined in nanopores: a dynamic density functional theory study. Polymer 55, 4281-4288 (2014). 19. T. Higuchi, A. Tajima, H. Yabu, M. Shimomura, Spontaneous formation of polymer nanoparticles with inner micro-phase separation structures. Soft Matter 4, 1302-1305 (2008). 20. T. Higuchi, K. Motoyoshi, H. Sugimori, H. Jinnai, H. Yabu, M. Shimomura, Three-dimensional observation of confined phase-separated structures in block copolymer nanoparticles. Soft Matter 8, 3791-3797 (2012). 21. P. Chi, Z. Wang, B. Li, A.-C. Shi, Soft Confinement-Induced Morphologies of Diblock Copolymers. Langmuir 27, 11683-11689 (2011). 22. B. Yu, B. Li, Q. Jin, D. Ding, A.-C. Shi, Self-Assembly of Symmetric Diblock Copolymers Confined in Spherical Nanopores. Macromolecules 40, 9133-9142 (2007). 23. P. Chen, H. Liang, A.-C. Shi, Microstructures of a Cylinder-Forming Diblock Copolymer under Spherical Confinement. Macromolecules 41, 8938-8943 (2008). 24. H. Yabu, T. Jinno, K. Koike, T. Higuchi, M. Shimomura, Three-dimensional assembly of gold nanoparticles in spherically confined microphase-separation structures of block copolymers. Macromolecules 44, 5868-5873 (2011). 25. A. C. Arsenault, D. A. Rider, N. Tétreault, J. I. L. Chen, N. Coombs, G. A. Ozin, I. Manners, Block Copolymers under Periodic, Strong Three-Dimensional Confinement. Journal of the American Chemical Society 127, 9954-9955 (2005). 26. B. Gates, Y. Xia, Fabrication and characterization of chirped 3D photonic crystals. Advanced Materials 12, 1329-1332 (2000). 27. T. Matsumoto, A. Ochi, Polymerization of styrene in aqueous solution. Kobunshi Kagaku 22, 481-487 (1965). 28. 陳二強, 單分散聚苯乙烯微粒/奈米碳管導電複合材料之製備與物性研究. 國立中興大學材料科學與工程學系所學位論文, (2009). 29. 翁啟洋, 分散聚合法製備均一粒徑聚苯乙烯微米球, 國立中央大學化學工程研究所碩士論文, (2016). 30. Y.-S. Cho, C. H. Shin, S. Han, Dispersion polymerization of polystyrene particles using alcohol as reaction medium. Nanoscale research letters 11, 46 (2016). 31. Q. Guo, C. Arnoux, R. E. Palmer, Guided Assembly of Colloidal Particles on Patterned Substrates. Langmuir 17, 7150-7155 (2001). 32. N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, K. Nagayama, Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 8, 3183-3190 (1992). 33. N. V. Dziomkina, G. J. Vancso, Colloidal crystal assembly on topologically patterned templates. Soft Matter 1, 265-279 (2005). 34. K. Davis, W. Russel, W. Glantschnig, Settling suspensions of colloidal silica: observations and X-ray measurements. Journal of the Chemical Society, Faraday Transactions 87, 411-424 (1991). 35. R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, Á. Blanco, 3D Long‐range ordering in ein SiO2 submicrometer‐sphere sintered superstructure. Advanced Materials 9, 257-260 (1997). 36. P. Ni, P. Dong, B.-y. Cheng, X. Li, D. Zhang, Synthetic SiO2 Opals. Advanced Materials 13, 437-441 (2001). 37. S. J. Yeo, G. H. Choi, P. J. Yoo, Multiscale-architectured functional membranes utilizing inverse opal structures. Journal of Materials Chemistry A 5, 17111-17134 (2017). 38. A. Rogach, N. Kotov, D. Koktysh, J. Ostrander, G. Ragoisha, Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A technique for rapid production of high-quality opals. Chemistry of Materials 12, 2721-2726 (2000). 39. M. Trau, D. Saville, I. Aksay, Field-induced layering of colloidal crystals. Science 272, 706-709 (1996). 40. 黃苡叡, 吳樸偉, 膠體晶體與反蛋白石結構之製作及工程應用, 國立交通大學材料科學與工程研究所博士論文, (2010). 41. G. I. Waterhouse, M. R. Waterland, Opal and inverse opal photonic crystals: fabrication and characterization. Polyhedron 26, 356-368 (2007). 42. J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, L. Jiang, Hierarchically ordered macro− mesoporous TiO2− graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS nano 5, 590-596 (2010). 43. B. Mandlmeier, J. M. Szeifert, D. Fattakhova-Rohlfing, H. Amenitsch, T. Bein, Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal. Journal of the American Chemical Society 133, 17274-17282 (2011). 44. E. Armstrong, M. Osiak, H. Geaney, C. Glynn, C. O'Dwyer, 2D and 3D vanadium oxide inverse opals and hollow sphere arrays. CrystEngComm 16, 10804-10815 (2014). 45. D.-Y. Kang, Y. Lee, C.-Y. Cho, J. H. Moon, Inverse opal carbons for counter electrode of dye-sensitized solar cells. Langmuir 28, 7033-7038 (2012). 46. D.-Y. Kang, S.-O. Kim, Y. J. Chae, J. K. Lee, J. H. Moon, Particulate inverse opal carbon electrodes for lithium-ion batteries. Langmuir 29, 1192-1198 (2013). 47. S. Y. Lee, S. H. Kim, H. Hwang, J. Y. Sim, S. M. Yang, Controlled Pixelation of Inverse Opaline Structures Towards Reflection‐Mode Displays. Advanced Materials 26, 2391-2397 (2014). 48. M. Leskelä, M. Ritala, Atomic layer deposition (ALD): from precursors to thin film structures. Thin solid films 409, 138-146 (2002). 49. J. A. Crawley, V. J. Saywell. (Google Patents, 1999). 50. G. Song, X. She, Z. Fu, J. Li, Preparation of good mechanical property polystyrene nanotubes with array structure in anodic aluminum oxide template using simple physical techniques. Journal of materials research 19, 3324-3328 (2004). 51. J. T. Chen, K. Shin, J. M. Leiston‐Belanger, M. Zhang, T. P. Russell, Amorphous carbon nanotubes with tunable properties via template wetting. Advanced Functional Materials 16, 1476-1480 (2006). 52. J. T. Chen, C. W. Lee, M. H. Chi, I. C. Yao, Solvent‐Annealing‐Induced Nanowetting in Templates: Towards Tailored Polymer Nanostructures. Macromolecular Rapid Communications 34, 348-354 (2013). 53. M. Steinhart, J. Wendorff, A. Greiner, R. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, U. Gösele, Polymer nanotubes by wetting of ordered porous templates. Science 296, 1997-1997 (2002). 54. M. Steinhart, R. B. Wehrspohn, U. Gösele, J. H. Wendorff, Nanotubes by template wetting: a modular assembly system. Angewandte Chemie International Edition 43, 1334-1344 (2004). 55. M. Zhang, P. Dobriyal, J.-T. Chen, T. P. Russell, J. Olmo, A. Merry, Wetting transition in cylindrical alumina nanopores with polymer melts. Nano letters 6, 1075-1079 (2006). 56. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, E. V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical reviews 110, 389-458 (2009). 57. N. Yan, H. Liu, Y. Zhu, W. Jiang, Z. Dong, Entropy-driven hierarchical nanostructures from cooperative self-assembly of gold nanoparticles/block copolymers under three-dimensional confinement. Macromolecules 48, 5980-5987 (2015). 58. Q. Zhao, W. Wang, C. Zhang, Z. Du, J. Mi, Understanding the microstructure of particle dispersion in confined copolymer nanocomposites. Physical Chemistry Chemical Physics 17, 26338-26345 (2015). 59. X. Wu, P. Chen, X. Feng, R. Xia, J. Qian, Effect of selective nanoparticles on phase separation of copolymer–nanoparticle composites confined between two neutral surfaces. Soft Matter 9, 5909-5915 (2013). 60. Q. Pan, C. Tong, Y. Zhu, Self-consistent-field and hybrid particle-field theory simulation of confined copolymer and nanoparticle mixtures. Acs Nano 5, 123-128 (2010). 61. W. Li, P. Zhang, M. Dai, J. He, T. Babu, Y.-L. Xu, R. Deng, R. Liang, M.-H. Lu, Z. Nie, Ordering of gold nanorods in confined spaces by directed assembly. Macromolecules 46, 2241-2248 (2013). 62. Y. H. Kim, H. Kang, S. Park, A. R. Park, Y. M. Lee, D. K. Rhee, S. Han, H. Chang, D. Y. Ryu, P. J. Yoo, Multiscale porous interconnected Nanocolander network with tunable transport properties. Advanced Materials 26, 7998-8003 (2014). 63. C. Decker, F. Masson, R. Schwalm, Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings. Polymer Degradation and Stability 83, 309-320 (2004). 64. P. Jiang, J. Bertone, K. Hwang, V. Colvin, Single-crystal colloidal multilayers of controlled thickness. Chemistry of Materials 11, 2132-2140 (1999). 65. L. M. Goldenberg, J. Wagner, J. Stumpe, B.-R. Paulke, E. Görnitz, Ordered arrays of large latex particles organized by vertical deposition. Langmuir 18, 3319-3323 (2002).zh_TW
dc.description.abstract嵌段共聚物(block copolymer)在特定的條件控制下會進行自組裝(self-assemble)形成不同的奈米微結構,如圓球、圓 柱、網狀與層板結構,且在空間侷限下其形態會變得更為複雜。本研究結合嵌段共聚物自組裝行為與三維侷限空間效應,探討嵌段共聚物在侷限空間下的自組裝行為改變。首先利用無乳化劑乳化聚合方式製備高分子蛋白石微球 (opal),再製成反蛋白石結構,以之為模板填入聚苯乙烯-b-聚乳酸嵌段共聚物(PS-b-PLA),探討不同控制參數: 如模板的親疏水性、粒徑、嵌段共聚物的體積分率等影響,以穿透式電子顯微鏡(TEM)觀察其自組裝型態變化。由於聚乳酸鏈段可輕易地被鹼液水解移除,而得到多層次(hierarchical)的孔洞結構,具有作為過濾與催化元件的應用潛力。zh_TW
dc.description.abstractBlock copolymers (BCP) can self-assemble to form ordered morphologies at nanometer scales, making them ideal materials for various applications. The self-assembly of BCPs is mainly controlled by the monomer–monomer interactions, block compositions and molecular architectures. Also, placing BCPs under confinement attracts people's attention because of their diversity of self-assembled morphologies. Here we use cylinder-forming PS-PLLA BCPs as a model system to study their self-assembly behaviors in a 3D confinement. Polymeric and ceramic inverse opals are served as templates for the 3D confinement. PUA and SiO2 inverse opals are used for the polymeric and ceramic 3D confinement structure, respectively. A variety of factors including hydrophilic property of template, intrinsic template property, and confinement size are performed. After hydrolysis of PLLA block, the hierarchical structure with high surface area should have great potential for filter application.en_US
dc.description.tableofcontents摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vii 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 1 第二章 文獻回顧 2 2.1 自組裝 2 2.1.1 自組裝的定義 2 2.1.2 自組裝種類 2 2.1.3 自組裝的應用 4 2.2 嵌段共聚物介紹 6 2.2.1 嵌段共聚物的自組裝 7 2.3 侷限空間效應 9 2.3.2 界面的影響 11 2.3.3 模擬退火法 (Simulated Annealing) 12 2.3.4 一維侷限空間下的自組裝行為 14 2.3.5 二維侷限空間下的自組裝行為 14 2.3.6 三維侷限空間下的自組裝行為 16 2.4 聚苯乙烯微球製備 22 2.4.1 乳化聚合方法 22 2.4.2 無乳化劑乳化聚合法 24 2.4.3 分散聚合法 25 2.5 微球自組裝技術介紹 26 2.5.1 溶液蒸發法 26 2.5.2 重力沉降法 (Gravitational Sedimentation) 27 2.5.3 物理侷限法(Physical Confinement) 28 2.5.4 電泳法 (Electrophoresis) 28 2.6 反蛋白石結構 30 2.6.1 反蛋白石結構製備 30 2.7 嵌段共聚物引入模板之方法-模板法介紹 38 2.7.1溶劑退火法 (Solvent annealing) 38 2.7.2熱退火法(Thermal annealing) 41 2.7.3溶液法 41 2.8 應用與未來展望 42 第三章 實驗方法 44 3.1 實驗藥品 44 3.2 實驗儀器 45 3.3 實驗流程 47 3.3.1 蛋白石模板製備 48 3.3.2 製備PUA反蛋白石結構流程 49 3.3.3 製備SiO2反蛋白石結構製備 50 3.4 單分散聚苯乙烯微球合成 51 3.5 蛋白石結構製備 52 3.6 反蛋白石結構模板製備 52 3.6.1 聚胺酯丙烯酸酯(PUA)反蛋白石結構模板製備 52 3.6.2 二氧化矽(SiO2)反蛋白石結構模板製程 53 3.7 溶劑誘導嵌段共聚物模板濕潤-PS-PLLA溶劑退火處理 54 3.8 PS-b-PLLA熱退火處理 54 第四章 結果與討論 55 4.1 蛋白石/反蛋白石模板製備 55 4.1.1 不同尺寸單分散聚苯乙烯微球之鑑定與性質分析 55 4.1.2 蛋白石結構製備 58 4.1.3 反蛋白石模板製備 61 4.2 高分子性質鑑定 69 4.2.1 PS-b-PLLA結構鑑定 69 4.2.2 PUA熱穩定性分析-TGA 72 4.3 侷限空間中微觀相分離結構分析 73 4.3.1不同退火處理對微觀相分離之影響 73 4.3.2 PS-b-PLLA在SiO2反蛋白石模板中微觀相分離 75 4.3.3 PS-b-PLLA在PUA反蛋白石模板中微觀相分離 77 4.4 粒徑對相分離的影響 81 第五章 總結 82 第六章 未來工作 83 參考文獻 84zh_TW
dc.subjectblock copolymeren_US
dc.subjecthard confinementen_US
dc.subjecthierarchical structureen_US
dc.titleBlock Copolymer Self-Assemblies in A 3D Confinementen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:材料科學與工程學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066023-1.pdf7.05 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.