Please use this identifier to cite or link to this item:
標題: 微電子構裝銅/銅直接接合之電鍍組織特徵效應探討
Microstructural Effect of Electrodeposited Copper on Direct Bonding for Microelectronic Assembly
作者: 謝宗育
Zong-Yu Xie
關鍵字: 電鍍;銅對銅接合;奈米雙晶銅;Electropalting Cu;Cu to Cu direct bonding;Nanotwinned Cu
引用: [1] R.Maheshwary and M.Moore, '3D Stacking : EDA Challenges & Opportunities SEMATECH Symposium September 2009 Senior Director Why 3D IC Design ? 3D IC Market Drivers & Opportunity,' Sensors (Peterborough, NH), no. September, pp. 1–11, 2009. [2] K. N.Chen, A.Fan, C. S.Tan, R.Reif, and Y.Wen, 'Microstructure evolution and abnormal grain growth during copper wafer bonding,' Appl. Phys. Lett., vol. 81, no. 20, pp. 3774–3776, 2002. [3] Y. S.Tang, Y. J.Chang, and K. N.Chen, 'Wafer-level Cu-Cu bonding technology,' Microelectron. Reliab., vol. 52, no. 2, pp. 312–320, 2012. [4] L.Peng, D. F.Lim, L.Zhang, H. Y.Li, and C. S.Tan, 'Effect of prebonding anneal on the microstructure evolution and Cu-Cu diffusion bonding quality for three-dimensional integration,' J. Electron. Mater., vol. 41, no. 9, pp. 2567–2572, 2012. [5] K. H. . L. and C. S. T.J. Fan, D. F. Lim, L. Peng, 'Low Temperature Cu-to-Cu Bonding for Wafer-Level Hermetic Encapsulation of 3D Microsystems,' Microsyst Technol, 2013. [6] H. M. T. and K. N. C.Y. P. Huang, Y. S. Chien, R. N. Tzeng, M. S. Shy, T. H. Lin, K. H. Chen, C. T. Chiu, J. C. Chiou, C. T. Chuang, W. Hwang, 'Novel Cu-to-Cu Bonding With Ti Passivation at 180oC Ti in 3-D Integration,' IEEE Electron Device Lett., vol. 34, no. 12, pp. 1551–1553, 2013. [7] T.Sakai, N.Imaizumi, and T.Miyajima, 'Low temperature Cu-Cu direct bonding for 3D-IC by using fine crystal layer,' 2012 2nd IEEE CPMT Symp. Japan, ICSJ 2012, 2012. [8] S.Umemoto, T.Ogihara, M.Matsuzaki, H.Rakugi, Y.Ohashi, an dT.Saruta, 'Effects of calcium channel blocker-based combinations on intra-individual blood pressure variability: Post hoc analysis of the COPE trial,' Hypertens. Res., vol. 39, no. 1, pp. 46–53, 2016. [9] C. M.Liu et al., 'Low-temperature direct copper-to-copper bonding enabled by creep on highly (1 1 1)-oriented Cu surfaces,' Scr. Mater., vol. 78–79, no. March, pp. 65–68, 2014. [10] C.Okoro, R.Agarwal, P.Limaye, B.Vandevelde, D.Vandepitte, and E.Beyne, 'Insertion bonding: A novel Cu-Cu bonding approach for 3D integration,' Proc. - Electron. Components Technol. Conf., pp. 1370–1375, 2010. [11] A.He, T.Osborn, S. A.Bidstrup Allen, and P. A.Kohl, 'Low-Temperature Bonding of Copper Pillars for All-Copper Chip-to-Substrate Interconnections,' Electrochem. Solid-State Lett., vol. 9, no. 12, p. C192, 2006. [12] R.Agarwal et al., 'Cu/Sn microbumps interconnect for 3D TSV chip stacking,' Proc. - Electron. Components Technol. Conf., vol. 1555, no. ii, pp. 858–863, 2010. [13] B.Lee, J.Park, S.-J.Jeon, K.-W.Kwon, and H.-J.Lee, 'A Study on the Bonding Process of Cu Bump/Sn/Cu Bump Bonding Structure for 3D Packaging Applications,' J. Electrochem. Soc., vol. 157, no. 4, p. H420, 2010. [14] H. Y.Chuang, J. J.Yu, M. S.Kuo, H. M.Tong, and C. R.Kao, 'Elimination of voids in reactions between Ni and Sn: A novel effect of silver,' Scr. Mater., vol. 66, no. 3–4, pp. 171–174, 2012. [15] P.-I.Wang et al., 'Low Temperature Wafer Bonding by Copper Nanorod Array,' Electrochem. Solid-State Lett., vol. 12, no. 4, p. H138, 2009. [16] C.Li andX.Liu, 'Research on low temperature bonding using nanoporous copper,' IEEE-ICEP, pp. 1026–1028, 2015. [17] Y.Jianfeng, Z.Guisheng, H.Anming, andY. N.Zhou, 'Preparation of PVP coated Cu NPs and the application for low-temperature bonding,' J. Mater. Chem., vol. 21, no. 40, pp. 15981–15986, 2011. [18] C. S.Tan, D. F.Lim, S. G.Singh, S. K.Goulet, andM.Bergkvist, 'Cu-Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol,' Appl. Phys. Lett., vol. 95, no. 19, pp. 2007–2010, 2009. [19] Y.Huang, Y.Chien, R.Tzeng, andK.Chen, 'Demonstration and Electrical Performance of Cu/Cu Bonding at 150°C With Pd Passivation,' IEEE Trans. Electron Devices, vol. 62, no. 8, pp. 2587–2592, 2015. [20] E. J.Jang, S.Hyun, H. J.Lee, andY. B.Park, 'Effect of wet pretreatment on interfacial adhesion energy of Cu-Cu thermocompression bond for 3D IC packages,' J. Electron. Mater., vol. 38, no. 12, pp. 2449–2454, 2009. [21] W.Yang, M.Akaike, H.Shitani, andT.Suga, 'Low temperature Cu-Cu direct bonding using formic acid vapor pretreatment,' IEEE-ICEP, no. 2008, p. 1138656, 2011. [22] T. G. A.Youngs, S.Haq, andM.Bowker, 'Formic acid adsorption and oxidation on Cu(1 1 0),' Surf. Sci., vol. 602, no. 10, pp. 1775–1782, 2008. [23] W.Lin andY. C.Lee, 'Study of fluxless soldering using formic acid vapor,' IEEE Trans. Adv. Packag., vol. 22, no. 4, pp. 592–601, 1999. [24] I. E.Wachs andD. E.Fein, 'Quantitative determination of the catalytic activity of bulk metal oxides for formic acid oxidation,' J. Catal., vol. 210, no. 2, pp. 241–254, 2002. [25] T.Suga, A.Masakate, W.Yang, andN.Mat, 'Formic acid treatment with Pt catalyst for Cu direct bonding at low temperature,' IEEE-ICEP, pp. 644–647, 2014. [26] M. A. and T. S.N. Matsuoka, M. Fujino, 'Process parameters for formic acid treatment with Pt catalyst for Cu direct bonding,' ICEP-IAAC, pp. 460–463, 2015. [27] M.Inamura, N.Yoshida, T.Oda, T.Abe, H.Abe, andI.Kusunoki, 'Vacuum sealing using surface activation bonding of Si wafer,' Vacuum, vol. 84, no. 5, pp. 518–522, 2009. [28] H.Takagi, R.Maeda, T. R.Chung, andT.Suga, 'Low temperature direct bonding of silicon and silicon dioxide by the surface activation method,' Proc. Int. Solid State Sensors Actuators Conf. (Transducers '97), vol. 1, pp. 657–660, 1997. [29] M.Kariyazaki et al., '表面酸化させたジルカロイの放射線誘起表面活性現象,' pp. 423–426, 2007. [30] X.Ma, W.Liu, Z.Song, W.Li, andC.Lin, 'Void-free low-temperature silicon direct-bonding technique using plasma activation,' J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 25, no. 1, p. 229, 2007. [31] T.Suga, T.Itoh, Z.Xu, M.Tomita, andA.Yamauchi, 'Surface activated bonding for new flip chip and bumpless interconnect systems,' Proc. - Electron. Components Technol. Conf., pp. 105–111, 2002. [32] S. Y.Kim, K.Hong, K.Kim, H. K.Yu, W. K.Kim, andJ. L.Lee, 'Effect of N2, Ar, and O2 plasma treatments on surface properties of metals,' J. Appl. Phys., vol. 103, no. 7, pp. 2–5, 2008. [33] J. W.Kim, K. S.Kim, H. J.Lee, H. Y.Kim, Y. B.Park, andS.Hyun, 'The effect of plasma pre-cleaning on the Cu-Cu direct bonding for 3D chip stacking,' Proc. Int. Symp. Phys. Fail. Anal. Integr. Circuits, IPFA, no. 3 mm, pp. 3–6, 2011. [34] Y. H. L. and C. S. T.S. L. Chua, G. Y. Chong, 'Direct Copper-Copper Wafer Bonding with Ar/N2 Plasma Activation,' IEEE-ESDDC, vol. 2, pp. 134–137, 2015. [35] S.Kim, Y.Nam, andS. E.Kim, 'Effects of forming gas plasma treatment on low-temperature Cu – Cu direct bonding,' J. App. Phy, pp. 2–6, 2016. [36] K.Tomita et al., 'Electron density change of atmospheric-pressure plasmas in helium flow depending on the oxygen/nitrogen ratio of the surrounding atmosphere,' Jpn. J. Appl. Phys., vol. 55, no. 6, 2016. [37] K. N.Chen, A.Fan, andR.Reif, 'Interfacial morphologies and possible mechanisms of copper wafer bonding,' J. Mater. Sci., vol. 37, no. 16, pp. 3441–3446, 2002. [38] J.Cho et al., 'Mechanism of low-temperature copper-to-copper direct bonding for 3D TSV package interconnection,' Proc. - Electron. Components Technol. Conf., vol. 2, pp. 1133–1140, 2013. [39] L.Qiu, A.Ikeda, K.Noda, S.Nakai, andT.Asano, 'Room-Temperature Cu Microjoining Using Ultrasonic Bonding of Cone Shaped Bump,' vol. 2, pp. 4–5, 2012. [40] J. B.Lee, J. L.Aw, andM. W.Rhee, 'Evaluation of die-attach bonding using high-frequency ultrasonic energy for high-temperature application,' J. Electron. Mater., vol. 43, no. 9, pp. 3317–3323, 2014. [41] A. I. T. T. and T. A.R. Takigawa, H. Kawano, T. Shuto, 'Room-temperature vacuum packaging using ultrasonic bonding with Cu compliant rim,' IEEE LTB-3D, vol. 52, no. 2013, p. 16501, 2014. [42] M. N. and H. T.Y. Arai, 'Cu-Cu Direct Bonding Technology Using Ultrasonic Vibration for Flip-chip Interconnection,' ICEP-IAAC, pp. 468–472, 2015. [43] P.Xu, F.Hu, J.Shang, A.Hu, andM.Li, 'An ambient temperature ultrasonic bonding technology based on Cu micro-cone arrays for 3D packaging,' Mater. Lett., vol. 176, pp. 155–158, 2016. [44] C.Shin et al., 'Current-assisted direct Cu/Cu joining,' Scr. Mater., vol. 104, pp. 21–24, 2015. [45] P. H.Chiang, S. Y.Liang, J. M.Song, S. K.Huang, Y. T.Chiu, andC. P.Hung, 'Enhanced Cu-To-Cu direct bonding by controlling surface physical properties,' Jpn. J. Appl. Phys., vol. 56, no. 3, 2017. [46] S.-Y.Liang, J.-M.Song, S.-K.Huang, Y.-T.Chiu, D.Tarng, andC.-P.Hung, 'Light enhanced direct Cu bonding for advanced electronic assembly,' J. Mater. Sci. Mater. Electron., vol. 29, no. 16, pp. 14144–14150, 2018. [47] S.Venkatesan et al., 'A high performance 1.8 V, 0.20 μm CMOS technology with copper metallization,' Int. Electron Devices Meet. IEDM Tech. Dig., pp. 769–772, 1997. [48] L.Lu, Y.Shen, X.Chen, L.Qian, andK.Lu, 'Ultrahigh strength and high electrical conductivity in copper.,' Science, vol. 304, no. 5669, pp. 422–6, 2004. [49] J. O.Bockris andM.Enyo, 'Electrodeposition of Gallium on Liquid and Solid Gallium Electrodes in Alkaline Solutions,' J. Electrochem. Soc., vol. 109, no. 1, p. 48, 1962. [50] E.Mattsson andJ. O.Bockris, 'Galvanostatic studies of the kinetics of deposition and dissolution in the copper + copper sulphate system,' Trans. Faraday Soc., vol. 55, p. 1586, 1959. [51] K. M.Yin, S. L.Jan, andC. C.Lee, 'Current pulse with reverse plating of nickel-iron alloys in a sulphate bath,' Surf. Coatings Technol., vol. 88, no. 1–3, pp. 219–225, 1997. [52] M.Ghaemi andL.Binder, 'Effects of direct and pulse current on electrodeposition of manganese dioxide,' J. Power Sources, vol. 111, no. 2, pp. 248–254, 2002. [53] A.Marlot, P.Kern, andD.Landolt, 'Pulse plating of Ni-Mo alloys from Ni-rich electrolytes,' Electrochim. Acta, vol. 48, no. 1, pp. 29–36, 2002. [54] S. D.Beattie andJ. R.Dahn, 'Single Bath, Pulsed Electrodeposition of Copper-Tin Alloy Negative Electrodes for Lithium-ion Batteries,' J. Electrochem. Soc., vol. 150, no. 7, p. A894, 2003. [55] J. C.Puippe andN.Ibl, 'Influence of charge and discharge of electric double layer in pulse plating,' J. Appl. Electrochem., vol. 10, no. 6, pp. 775–784, 1980. [56] L.Lu, X.Chen, X.Huang, andK.Lu, 'Revealing the maximum strength in nanotwinned copper,' Science (80-. )., vol. 323, no. January, pp. 2007–2010, 2009. [57] D.Xu, W. L.Kwan, K.Chen, X.Zhang, V.Ozolinš, andK. N.Tu, 'Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition,' Appl. Phys. Lett., vol. 91, no. 25, 2007. [58] D.Xu et al., 'In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper,' J. Appl. Phys., vol. 105, no. 2, 2009. [59] R.Niu, K.Han, Y.Su, T.Besara, T. M.Siegrist, andX.Zuo, 'Influence of grain boundary characteristics on thermal stability in nanotwinned copper,' Sci. Rep., vol. 6, no. 1, p. 31410, 2016.
近年來隨著3D-IC發展成主流趨勢,大量新穎電子產品接連問世,在電子元件的製程中,常見的填入銅導線製程為電鍍法,利於晶片進行縱向矽穿孔堆疊(Through Si via, TSV)。電鍍銅因配方與製程的不同,在硬度、成長方位、晶粒徑與雙晶比例可顯現相當大的差異。本實驗中使用直流電與脈衝電流以及硬銅的添加劑等,製備出三種具不同晶粒特徵電鍍銅膜,於250oC、10MPa進行銅/銅直接壓合,探討組織效應與光照效果。實驗結果顯示,細晶粒、高雙晶比例與表面壓縮殘留應力均有助於直接接合效果。但接點強度仍不如銅表面具伸張殘留應力但晶粒徑小至0.08μm2之濺鍍銅。各種銅試片含電鍍、濺鍍製備者,經Xenon flash表面改質,接合強度均可提升約60%。本研究亦提出以脈衝電鍍製程加上後續光照處理,電鍍銅試片接合強度可較商業配方、具粗大等軸晶者高出129%。

In order to allow conductance between stacked ICs, jointing by metallic connections is necessary. Cu-to-Cu direct bonding is ideal to form required interconnections because copper possesses many advantages, e.g., excellent electrical conductivity, low cost and high electromigration resistance. Electroplating is commonly used to deposit Cu into TSV. Due to ingredient and processing variations, electroplated Cu with differences in hardness, growth orientation, grain size as well as twin boundary fraction can be prepared. In this study, three kinds of electroplated Cu films with various hardnesses and crystal characteristics are deposited and a comparison with sputtered Cu is made. Effects of microstructure and Xenon pulses on directly bonded joint strength are investigated. Experimental results reveal that fine grains, high twin boundary fraction and compressive surface residual stresses are beneficial to thermal compression bonding. However, sputtered Cu with ultra-fine grain (grain size of 0.08 m2) possessed greater joint strength even though the surface stresses are tensile. It is found that subjected to a proper flash pulse exposure, the directly bonded joint strength all kinds of Cu films can be raised by 60%. An optimal process design for electroplated Cu can also be proposed. With pulsed electroplating and following flash irradiation, the joint strength obtained is 129% higher than that of Cu films with coarse equiaxed grains prepared using commercial ingredients.
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-27起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066011-1.pdf4.69 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.