Please use this identifier to cite or link to this item:
標題: 成長鐵矽化物/矽異質結構奈米線及其光感測性質之研究
Fabrication of Fe-Silicide/Si Heterstructure Nanowires and their Photosening Properties
作者: 林俊龍
Jyun-Long Lin
關鍵字: 矽奈米線;鐵矽化物/矽異質結構奈米線;光感測器;Silicon nanowiresIron-silicide/silicon heterstructure;photosening
引用: [1] L. Li, Y. Fang, C. Xu, Y. Zhao, K. Wu, C. Limburg, P. Jiang and K. J. Ziegler. 'Controlling the Geometries of Si Nanowires through Tunable Nanosphere Lithography', ACS Appl Mater Interfaces. 9: 7368-7375.(2017) [2] S. Onclin, B. J. Ravoo and D. N. Reinhoudt. 'Engineering silicon oxide surfaces using self-assembled monolayers', Angew Chem Int Ed Engl. 44: 6282-304.(2005) [3] D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo and W. J. Ma. 'Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers', Nano Lett. 6: 2375-2378.(2006) [4] S. L. Cheng, L. H. Chang, C. F. Chuang and H. Chen. 'Fabrication and characterization of periodic arrays of epitaxial Ni-silicide nanocontacts on (110)Si', Applied Surface Science. 343: 88-93.(2015) [5] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K. Nagayama. 'Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates', Langmuir. 8: 3183-3190.(1992) [6] Z. Huang, H. Fang and J. Zhu. 'Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density', Advanced Materials. 19: 744-748.(2007) [7] W. Li, L. Xu, W. M. Zhao, P. Sun, X.-F. Huang and K.-J. Chen. 'Fabrication of large-scale periodic silicon nanopillar arrays for 2D nanomold using modified nanosphere lithography', Applied Surface Science. 253: 9035-9038.(2007) [8] L. Hu and G. Chen. 'Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications', Nano Lett. 7: 3249-3252.(2007) [9] J. Y. Jung, K. Zhou and J. H. Lee. 'Broadband enhancement of optical absorption in a silicon nanowire flexible thin film', Thin Solid Films. 570: 75-80.(2014) [10] Y. Lu and A. Lal. 'High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography', Nano Lett. 10: 4651-6.(2010) [11] Y. Wang, J. Tang, Z. Peng, Y. Wang, D. Jia, B. Kong, A. A. Elzatahry, D. Zhao and G. Zheng. 'Fully solar-powered photoelectrochemical conversion for simultaneous energy storage and chemical sensing', Nano Lett. 14: 3668-73.(2014) [12] L. Lin, D. Liu, Q. Chen, H. Zhou and J. Wu. 'A vertical tip-tip contact silicon nanowire array for gas sensing', Nanoscale. 8: 17757-17764.(2016) [13] C. Xie, B. Nie, L. Zeng, Feng-Xia Liang, M. Z. Wang, L. Luo, M. Feng, Y. Yu and C. Y. Wu. 'Core Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors', ACS Nano. 8: 4015-4022.(2014) [14] Z. Yujia, L. Mathew, R. Rao, M. Palard, S. Chopra, J. G. Ekerdt, L. F. Register and S. K. Banerjee. 'High-Performance Vertical Gate-All-Around Silicon Nanowire FET With High-κ/Metal Gate', IEEE Transactions on Electron Devices. 61: 3896-3900.(2014) [15] D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P. C. McIntyre, T. Krishnamohan and K. C. Saraswat. 'Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics', Applied Physics Letters. 83: 2432-2434.(2003) [16] A. M. Morales and C. M. Lieber. 'A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires', SCIENCE. 279: 208-211.(1998) [17] N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee and S. T. Lee. 'SiO2-enhanced synthesis of Si nanowires by laser ablation', Applied Physics Letters. 73: 3902-3904.(1998) [18] V. Brouzet, B. Salem, P. Periwal, R. Alcotte, F. Chouchane, F. Bassani, T. Baron and G. Ghibaudo. 'Fabrication and electrical characterization of homo- and hetero-structure Si/SiGe nanowire Tunnel Field Effect Transistor grown by vapor–liquid–solid mechanism', Solid-State Electronics. 118: 26-29.(2016) [19] X. Zhong, Y. Qu, Y. C. Lin, L. Liao and X. Duan. 'Unveiling the formation pathway of single crystalline porous silicon nanowires', ACS Appl Mater Interfaces. 3: 261-70.(2011) [20] C. Y. Chen, C. S. Wu, C. J. Chou and T. J. Yen. 'Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature', Advanced Materials. 20: 3811-3815.(2008) [21] D. Z. Chi. 'Semiconducting beta-phase FeSi2 for light emitting diode applications: Recent developments, challenges, and solutions', Thin Solid Films. 537: 1-22.(2013) [22] K. Noda, Y. Terai, S. Hashimoto, K. Yoneda and Y. Fujiwara. 'Modifications of direct transition energies in β-FeSi2 epitaxial films grown by molecular beam epitaxy', Applied Physics Letters. 94: 241907.(2009) [23] N. Seki, K. Takakura, T. Suemasu and F. Hasegawa. 'Conduction type and defect levels of β-FeSi2 films grown by MBE with different Si/Fe ratios', Materials Science in Semiconductor Processing. 6: 307-309.(2003) [24] K.i. Takakura, T. Suemasu and F. Hasegawa. 'Donor and Acceptor Levels in Undoped B-FeSi2 Films Grown on Si (001) Substrates', The Japan Society of Applied Physics. 40: 249-251.(2001) [25] H. Katsumata, Y. Makita, N. Kobayashi, H. Shibata, M. Hasegawa, I. Aksenov, S. Kimura, A. Obara and S. i. Uekusa. 'Optical absorption and photoluminescence studies of β‐FeSi2prepared by heavy implantation of Fe+ions into Si', Journal of Applied Physics. 80: 5955-5962.(1996) [26] Y. Nakamura, S. Amari, N. Naruse, Y. Mera, K. Maeda and M. Ichikawa. 'Self-Assembled Epitaxial Growth of High Density B-FeSi2 Nanodots on Si (001) and Their Spatially Resolved Optical Absorption Properties', Crystal growth and desing. 8: 3019-3023.(2008) [27] S. Izumi, M. Shaban, N. Promros, K. Nomoto and T. Yoshitake. 'Near-infrared photodetection of β-FeSi2/Si heterojunction photodiodes at low temperatures', Applied Physics Letters. 102: 032107.(2013) [28] M. Shaban, K. Nomoto, K. Nakashima and T. Yoshitake. 'Low-Temperature Annealing of n-Type β-FeSi2/p-Type Si Heterojunctions', Japanese Journal of Applied Physics. 47: 3444-3446.(2008) [29] A. V. Shevlyagin, D. L. Goroshko, E. A. Chusovitin, S. A. Balagan, S. A. Dotsenko, K. N. Galkin, N. G. Galkin, T. S. Shamirzaev, A. K. Gutakovskii, A. V. Latyshev, M. Iinuma and Y. Terai. 'A room-temperature-operated Si LED with β-FeSi2 nanocrystals in the active layer: μW emission power at 1.5 μm', Journal of Applied Physics. 121: 113101.(2017) [30] A. V. Shevlyagin, D. L. Goroshko, E. A. Chusovitin, K. N. Galkin, N. G. Galkin and A. K. Gutakovskii. 'Enhancement of the Si p-n diode NIR photoresponse by embedding beta-FeSi2 nanocrystallites', Sci Rep. 5: 14795.(2015) [31] N. Vouroutzis, T. T. Zorba, C. A. Dimitriadis, K. M. Paraskevopoulos, L. Dózsa and G. Molnár. 'Growth of β-FeSi2 particles on silicon by reactive deposition epitaxy', Journal of Alloys and Compounds. 448: 202-205.(2008) [32] S. W. Hung, P. H. Yeh, L. W. Chu, C. D. Chen, L. J. Chou, Y. J. Wu and L. J. Chen. 'Direct growth of β-FeSi2 nanowires with infrared emission, ferromagnetism at room temperature and high magnetoresistance via a spontaneous chemical reaction method', Journal of Materials Chemistry. 21: 5704.(2011) [33] C. Yang, C. J. Barrelet, F. Capasso and C. M. Lie. 'Single p-Type/Intrinsic/n-Type Silicon Nanowires as Nanoscale Avalanche Photodetectors', Nano Lett. 9: 2929-2934.(2006) [34] Y. Dai, X. Wang, W. Peng, H. Zou, R. Yu, Y. Ding, C. Wu and Z. L. Wang. 'Largely Improved Near-Infrared Silicon-Photosensing by the Piezo-Phototronic Effect', ACS Nano. 11: 7118-7125.(2017) [35] V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk and S. H. Christiansen. 'Silicon Nanowire-Based Solar Cells on Glass: Synthesis, Optical Properties, and Cell Parameters', Nano Lett. 9: 1549-1554.(2009) [36] Q. Hong, Y. Cao, J. Xu, H. Lu, J. He and J. L. Sun. 'Self-powered ultrafast broadband photodetector based on p-n heterojunctions of CuO/Si nanowire array', ACS Appl Mater Interfaces. 6: 20887-94.(2014) [37] B. Das, N. S. Das, S. Sarkar, B. K. Chatterjee and K. K. Chattopadhyay. 'Topological Insulator Bi2Se3/Si-Nanowire-Based p-n Junction Diode for High-Performance Near-Infrared Photodetector', ACS Appl Mater Interfaces. 9: 22788-22798.(2017) [38] P. V. Kamat, R. Huehn and R. Nicolaescu. 'A 'Sense and Shoot' Approach for Photocatalytic Degradation of Organic Contaminants in Water', J. Phys. Chem. B. 106: 788-794.(2002) [39] H. Liu, G. She, L. Mu and W. Shi. 'Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation', Materials Research Bulletin. 47: 917-920.(2012) [40] R. Thiruvenkatachari, S. Vigneswaran and I. S. Moon. 'A review on UV/TiO2 photocatalytic oxidation process', Korean J. Chem. Eng. 25: 64-72.(2008) [41] A. Fujishima and K. Honda. 'Electrochemical Photolysis of Water at a Semiconductior Electrode', nature. 238: 37-38.(1972) [42] M. Shao, L. Cheng, X. Zhang, D. D. D. Ma and S.-t. Lee. 'Excellent Photocatalysis of HF-Treated Silicon Nanowires', J. AM. CHEM. SOC. 131: 17738-17739.(2009) [43] H. Yu, X. Li, X. Quan, S. Chen and Y. Zhang. 'Effective Utilization of Visible Light (Including λ > 600 nm) in Phenol Degradation with p-Silicon Nanowire/TiO2 Core/Shell Heterojunction Array Cathode', Environ. Sci. Technol. 43: 7849–7855.(2009) [44] Y. J. Hwang, A. Boukai and P. Yang. 'High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity', Nano Lett. 9: 410-415.(2008) [45] M. Yoshimizu, R. Kobayashi, M. Saegusa, T. Takashima, H. Funakubo, K. Akiyama, Y. Matsumoto and H. Irie. 'Photocatalytic hydrogen evolution over beta-iron silicide under infrared-light irradiation', Chem Commun . 51: 2818-20.(2015) [46] P. Y. Reddy, L. Giribabu, C. Lyness, H. J. Snaith, C. Vijaykumar, M. Chandrasekharam, M. Lakshmikantam, J. H. Yum, K. Kalyanasundaram, M. Gratzel and M. K. Nazeeruddin. 'Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine', Angew Chem Int Ed Engl. 46: 373-6.(2007) [47] S. Zhu, G. Q. Lo and D. L. Kwong. 'Low-Cost and High-Speed SOI Waveguide-Based Silicide Schottky-Barrier MSM Photodetectors for Broadband Optical Communications', IEEE Photonics Technology Letters. 20: 1396-1398.(2008) [48] Y. T. Wu, C. W. Huang, C. H. Chiu, C. F. Chang, J. Y. Chen, T. Y. Lin, Y. T. Huang, K. C. Lu, P. H. Yeh and W. W. Wu. 'Nickel/Platinum Dual Silicide Axial Nanowire Heterostructures with Excellent Photosensor Applications', Nano Lett. 16: 1086-91.(2016) [49] J. Rybczynski, U. Ebels and M. Giersig. 'Large-scale, 2D arrays of magnetic nanoparticles', Colloids and Surfaces A: Physicochemical and Engineering Aspects. 219: 1-6.(2003) [50] P. I. Stavroulakis, N. Christou and D. Bagnall. 'Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly', Materials Science and Engineering: B. 165: 186-189.(2009) [51] J. M. Weisse, D. R. Kim, C. H. Lee and X. Zheng. 'Vertical transfer of uniform silicon nanowire arrays via crack formation', Nano Lett. 11: 1300-1305.(2011) [52] H. v. Kinel, N. Onda, H. Sirringhaus, E. Miiller-Gubler and S. Goncalves-Conto. 'Epitaxial phase transitions in the iron/silicon system', Applied Surface Science. 70: 559-563.(1993) [53] D. R. Miquita, R. Paniago, W. N. Rodrigues, M. V. B. Moreira, H. D. Pfannes and A. G. de Oliveira. 'Growth of β-FeSi2 layers on Si (111) by solid phase and reactive deposition epitaxies', Thin Solid Films. 493: 30-34.(2005) [54] Z. Liu, M. Tanaka, R. Kuroda, M. Osamura and Y. Makita. 'Influence of Si∕Fe ratio in multilayer structures on crystalline growth of β-FeSi2 thin film on Si substrate', Applied Physics Letters. 93: 021907.(2008) [55] T. Suemasu, K. Takakura, C. Li, Y. Ozawa, Y. Kumagai and F. Hasegawa. 'Epitaxial growth of semiconducting β-FeSi2 and its application to light-emitting diodes', Thin Solid Films. 461: 209-218.(2004) [56] Z. Liu, M. Watanabe and M. Hanabusa. 'Electrical and photovoltaic properties of iron-silicidersilicon heterostructures formed by pulsed laser deposition', Thin Solid Films.381: 262-266.(2001) [57]簡文慶 '以電場誘發排列鎳矽化物/矽異質結構奈米線製備光感測元件', 碩士論文,國立中興大學材料科學與工程學系,民國一百零六年。 [58] H. A. Chaliyawala, A. Ray, R. K. Pati and I. Mukhopadhyay. 'Strong light absorption capability directed by structured profile of vertical Si nanowires', Optical Materials. 73: 449-458.(2017) [59] N. Promros, R. Baba, M. Takahara, T. M. Mostafa, P. Sittimart, M. Shaban and T. Yoshitake. 'Epitaxial growth of β-FeSi2 thin films on Si(111) substrates by radio frequency magnetron sputtering and their application to near-infrared photodetection', Japanese Journal of Applied Physics. 55:1-4.(2016) [60] K. Wtinstel and P. Wagner. 'Interstitial Iron and Iron-Acceptor Pairs in Silicon'27: 207-212.(1982) [61] S. K. Mohapatra, N. Kondamudi, S. Banerjee and M. Misra. 'Functionalization of Self-Organized TiO2 Nanotubes with Pd Nanoparticles for Photocatalytic Decomposition of Dyes under Solar Light Illumination', Langmuir. 24:11276-11281.(2008) [62] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J.-M. Herrmann. 'Photocatalytic degradation pathway of methylene blue in water', Applied Catalysis B: Environmental. 31:145-157.(2001)
  鐵矽化合物其中的β-FeSi2具有低能隙(0.8~0.95eV),β-FeSi2會與矽形成p-n接面,因此目前普遍被應用於近紅外光偵測器、LED(light-emittting diode)、太陽能電池應用上被廣泛研究。
實驗結果顯示,鐵矽化物的結構會隨著鐵蒸鍍量與持溫時間改變,鐵蒸鍍量1 5 nm持溫2小時下可以得到完整的β-FeSi2相,蒸鍍量 15 nm矽化物/矽異質結構奈米線陣列元件相較於純矽奈米線陣列其具有一高電流與高電流變化的特性。於光催化降解亞甲基藍染料中發現蒸鍍量5 nm形成分布均勻且細小的鐵矽化物奈米顆粒有增強光降解效率的作用。

Silicon nanowire arrays has proven to be a reliable and excellent phtoto sensing device and a catalyst for photocatalytic reaction.In particular, silicon nanowire array sensor can provide a larger reaction area better anti-reflection and hegher optical absorption capacity than thin film sensor.However, it has a week photosensing properties in near-infrared region because of its indirect bandgap and energy of 1.1eV.
Because of its low energy bandgap of (0.8~0.95eV), and forming a p-n junction. β-FeSi2 is widely used in near-infrared light detectors, LEDs (light-emittting diodes), Solar cells.
In this study,silicon nanowire arrays were prepared by nanosphere lithography and metal-assisted chemical etching. β-FeSi2/Si heterstructure nanowire arrays were fabricated by 80° glancing angle Fe deposition and reactive deposition epitaxy (RDE). The electrical,photosensing and photocatalytical β-FeSi2 /Si heterostructured nanowire array devices. the electrical were investigated.
The results show that the phase of iron silicide depend on amount of iron ,deposition temperature and annealing time. When 15 nm iron deposited on silicon nanowire array at 500 °C and subsequently annealed at 700 °C for 2 hours the β-FeSi2 phase can be obtained. The β-FeSi2 /Si heterostructured nanowire arraydevice has a higher photocurrent than silicon nanowire array device. 5 nm iron deposited sample exhibited the highest decomposition rate of methylene blue dye under visible light irradiation because its rion silicide crystals had small size and separated from each other.
Rights: 同意授權瀏覽/列印電子全文服務,2019-08-31起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066002-1.pdf5.89 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.