Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97856
標題: 無基板支撐氮化鋁鎵/氮化鎵場效電晶體之特性探討
Study of free-standing AlGaN/GaN high electron mobility transistors
作者: 蕭輔詳
Fu-Hsiang Hsiao
關鍵字: 無基板支撐氮化鋁鎵;氮化鎵;Study of free-standing AlGaN;GaN
引用: [1]. J. I. Pankove, 'Gallium Nitride (GaN) I'(Academic press, San Diego,1998) [2]. S. Yoshida et al. 'Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates' Appl. Phy. Lett. 42, 427 (1983). [3]. H. Amanoet al. 'Stimulated Emission Near Ultraviolet at Room Temperature from a GaN Film Grown on Sapphire by MOVPE Using an AlN Buffer Layer' Jpn. J. Appl. Phys. 29, L205 (1990). [4]. S. Nakamura, 'GaN Growth Using GaN Buffer Layer' Jpn. J. Appl. Phys. 30, L1705 (1991). [5].S. Nakamura , M. Senoh, N. Iwasa , and S. I. Nagahama, 'High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures.' Japanese Journal of Applied Physics 34.7A (1995): L797. [6].郭浩中 and 郭守義, LED 原理與應用第二版: 五南文化事業, 2012. [7]. S. Yoshida et al. 'Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates' Appl. Phy. Lett. 42, 427 (1983). [8]. H. Amanoet al. 'Stimulated Emission Near Ultraviolet at Room Temperature from a GaN Film Grown on Sapphire by MOVPE Using an AlN Buffer Layer' Jpn. J. Appl. Phys. 29, L205 (1990). [9]. S. Nakamura, 'GaN Growth Using GaN Buffer Layer' Jpn. J. Appl. Phys. 30, L1705 (1991). [10]. S. Nakamura , M. Senoh, N. Iwasa , and S. I. Nagahama, 'High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures.' Japanese Journal of Applied Physics 34.7A (1995): L797 [11].J. M. Barker, D. K. Ferry, S. M. Goodnick, D. D. Doleske, A. Allerman, and R. J. Shul, 'Effects of surface treatment on The velocity–field characteristics of AlGaN/GaN heterostructures.' Semiconductor science and technology 19.4 (2004): S478. [12] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, 'Self-Heating in high-power AlGaN–GaN HFETs,' IEEE Electron Devices Lett., vol. 19, pp. 89–91, Feb. 1998. [13] E. M. Chumbes, A. T. Schremer, J. A. Smart, Y. Wang, N. C. MacDonald, D. Hogue, J. J. Komiak, S. J. Lichwalla, R. E. Leoni, and J. R. Shealy, 'AlGaN/GaN high electron mobility transistors on Si (111) substrates,' IEEE Trans. Electron Devices, vol. 48, pp. 420–425, Mar. 2001. [14] P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Lüth, and P. Kordoˇs, 'AlGaN/GaN HEMTs on (111) silicon substrates,' IEEE Electron Device Lett., vol. 23, pp. 4–6, Jan. 2002. [15] M. Kuball, J. M. Hayes, M. J. Uren, T. Martin, J. C. H. Birbeck, R. S. Balmer, and B. T. Hughes, 'Measurement of temperature in active highpower AlGaN/GaN heterostructure field effect transistors using Raman spectroscopy,' IEEE Electron Device Lett., vol. 23, pp. 7–9, Jan. 2002 [16] J. W. Johnson, J. Han, A. B. Baca, R. D. Briggs, R. J. Shul, J. R. Wendt, C. Monier, F. Ren, B. Luo, S. N. G. Chu, D. Tsvetkov, V.Dimitriev, and S. J. Pearton, 'Comparison of AlGaN/GaN high electron mobility transistors grown on AlN/SiC templates or sapphire,' Solid-State Electron., vol. 46, pp. 513–523, 2002. [17] J. V. DiLorenzo and D. D. Khandelwal, GaAs FET Principles and Technology. Norwood, MA: Artech House, 1982, pp. 308–347. [18]D. Francis, J. Wasserbauer, F. Faili, D. Babic´, F. Ejeckam, W. Hong, P. Specht, and E. R. Weber, in Proceedings of the CS MANTECH (Austin, TX, USA, 2007), p. 133. [19]J. G. Felbinger, M. V. S. Chandra, Y. Sun, L. F. Eastman, J. Wasserbauer, F. Faili, D. Babic, D. Francis, and F. Ejeckam, IEEE Electron Device Lett. 28, 948 (2007). [20]Y. Kobayashi, K. Kumakura, T. Akasaka, and T. Makimoto, Nature 484, 223 (2012). [21]A. J. Trindade, B. Guilhabert, D. Massoubre, D. Zhu, N. Laurand, E. Gu, I. M. Watson, C. J. Humphreys, and M. D. Dawson, Appl. Phys. Lett. 103, 253302 (2013). [22]L.-W. Jang, D.-W. Jeon, T.-H. Chung, A. Y. Polyakov, H.-S. Cho, J.-H. Yun, J.-W. Ju, J.-H. Baek, J.-W. Choi, and I.-H. Lee, ACS Appl. Mater. Interfaces 6, 985 (2014). [23]J. Kim, C. Bayram, H. Park, C.-W. Cheng, C. Dimitrakopoulos, J. A. Ott, K. B. Reuter, S. W. Bedell, and D. K. Sadana, Nat. Commun. 5, 4836 (2014). [24]Y. Kobayashi and T. Akasaka, J. Cryst. Growth 310, 5044 (2008). [25]T. Makimoto, K. Kumakura, Y. Kobayashi, T. Akasaka, and H. Yamamoto, Appl. Phys. Express 5, 072102 (2012). [26] R. Gaska, A. Osinsky, J. Yang, and M. Shur, IEEE Electron Device Lett. 19(3), 89–91 (1998). [27] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, IEEE Trans. Electron Devices 48(3), 586–590 (2001). [28] D.Francis,J.Wasserbauer,andF.Faili,GaN-HEMTepilayers on diamond substrates: Recent progress, in: CS MANTECH Conf. 2007, No. 650 (IEEE, 2007), pp. 1–4. [29] J. G. Felbinger, M. V. S. Chandra, Y. Sun, L. Eastman, J. Wasserbauer, F. Faili, D. Babic, D. Francis, and F. Ejeckam, IEEE Electron Device Lett. 28(11), 948–950 (2007). [30] J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E.Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, Nature 465(7296), 329–333 (2010). [31] C. W. Cheng, K. T. Shiu, N. Li, S. J. Han, L. Shi, and D. K. Sadana, Nat. Commun. 4, 1577 (2013). [32]C. Kisielowski, J. Kru¨ger, S. Ruvimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, and E. R. Weber, 'Strain-related phenomena in GaN thin films.' Physical Review B 54.24 (1996): 17745.
摘要: 
本論文是為了探討氮化鋁鎵/氮化鎵高電子遷移率電晶體熱效應的影響,解決熱效應的問題會用基板剝離技術,基板剝離技術(包含兩個部份1.剝離前後彎曲的問題、2.剝離跟散熱基板合併鍵結、Bending的問題)針對這兩個問題作探討,本論文是做變溫和彎曲關係的研究探討。將氮化鋁鎵/氮化鎵高電子遷移率電晶體元件,利用雷射切割技術、電化學蝕刻製程成功剝離氮化鋁鎵/氮化鎵高電子遷移率電晶體薄膜,將剝離前電晶體(ST-HEMT)和電晶體薄膜(NM-HEMT)做變溫量測,量測汲極電流與汲源極電壓特性曲線觀察電晶體薄膜(NM-HEMT)電流降低了,但由電流較低之曲線,可發現散熱效果變差,熱效應比較嚴重所導致,而熱效應導致Id電流較小,Ids(max)電流下降使得最小電流暗(漏)電流變大(10-7),而gm值是以NM-HEMT熱效應影響比較小,整體gm質偏低,所以ST-HEMT的散熱控制率比較好,但是整體看起來NM-HEMT是比較低。Bending:方面下彎跟上彎gm值、Id-Vd、Id-Vg數據比較有差別,可能是以下因素造成:1.外加彎曲Bending應力因素、2.應力特性因素,讓上彎樣品據有較佳之元件特性。

This paper discussed the influence of the thermal effect of aluminum gallium nitride/gallium nitride high electron mobility transistor. The problem of solving the thermal effect is to use the substrate stripping technology and the substrate stripping technology (including two parts: the problem of bending before and after peeling, 2. The problem of detaching and bonding the heat-dissipating substrate and Bending) To discuss these two problems, this paper is to study the relationship between temperature change and bending. The aluminum gallium nitride/gallium nitride high electron mobility transistor element is successfully stripped of aluminum gallium nitride/gallium nitride high electron mobility transistor film by laser cutting technology and electrochemical etching process, and the pre-peeling transistor is removed. (ST-HEMT) and transistor film (NM-HEMT) by varying measures temperature, measuring the peak current and the source voltage characteristic curve to observe the transistor film (NM-HEMT) current is reduced, but the current is lower The curve can be found that the heat dissipation effect is worse, the thermal effect is more serious, and the thermal effect causes the Id current to be smaller, and the Ids(max) current decreases so that the minimum current dark (leakage) current becomes larger (10-7), and the gm value is The thermal effect of NM-HEMT is relatively small, and the overall gm quality is low. Therefore, the heat control rate of ST-HEMT is better, but the overall appearance of NM-HEMT is relatively low. Bending: There are differences in the gm value, Id-Vd, and Id-Vg data of the lower bend and the upper bend, which may be caused by the following factors: 1. Additional bending Bending stress factor, 2. Stress characteristic factor, so that the upper bend sample has Good component characteristics.
URI: http://hdl.handle.net/11455/97856
Rights: 同意授權瀏覽/列印電子全文服務,2020-01-31起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-108-5101066028-1.pdf1.88 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.