Please use this identifier to cite or link to this item:
標題: 環境濕度對氧化銦基奈米針之室溫氣體感測特性影響研究
Effect of Ambient Humidity to Room-Temperature Gas-Sensing Properties of In2O3 and NiO/In2O3 Nanoneedles
作者: 林伯宇
Bo-Yu Lin
關鍵字: 氧化銦;氧化鎳;異質接面結構;氣體感測;室溫;抗濕性;In2O3;NiO;p-n heterojunction;gas sensing;room temperature;anti-humidity
引用: [1]國立中央大學,物質安全資料表(NO2)。, 2018 (accessed 30 May 2018). [2]Agency for Toxic Substances and Disease Registry, Hydrogen Sulfide - ToxFAQs™., 2018 (accessed 30 May 2018). [3]M. Mizuhashi, Electrical properties of vacuum-deposited indium oxide and indium tin oxide films, Thin Solid Films 70(1980) 91-100. [4]X. Chen, CK.Y. Wong, CA. Yuan, G. Zhang, Nanowire-based gas sensors, Sens. Actuators B-Chem. 177(2013) 178-195. [5]S. Gunji, M. Jukei, Y. Shimotsuma, K. Miura, K. Suematsu, K. Watanabe, K. Shimanoe, Unexpected gas sensing properties of SiO2/SnO2 core-shell nanofibers under dry and humid conditions, J. Mater. Chem. C. 5(2017) 6369-6376. [6]J.M. Baik, M. Zielke, M.H. Kim, K.L. Turner, A.M Wodtke, M. Moskovits, Tin-oxide-nanowire-based electronic nose using heterogeneous catalysis as a functionalization strategy, ACS Nano 4(2010) 3117-3122. [7]S. Sharma, M. Madou, A new approach to gas sensing with nanotechnology, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 370(2011) 2448-2473. [8]三聯科技周瑞福,氣體感測器原理與應用。$FILE/77-25-31.pdf, 2018 (accessed 30 May 2018). [9]X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, A survey on gas sensing technology, Sens. 12(2012) 9635-9665. [10]陳金龍,氣體感應器。, 2018 (accessed 30 May 2018). [11]K. Chan, H. Ito, H. Inaba, An optical-fiber-based gas sensor for remote absorption measurement of low-level CH4 gas in the near-infrared region, J. Lightwave Technol. 2(1984) 234-237. [12]Systech Instruments, Paramagnetic Cells., 2018 (accessed 30 May 2018). [13]T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films, Anal. Chem. 34(1962) 1502-1503. [14]N Taguchi, Published patent application in Japan, S37-47677(1962). [15]C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors, Sens. 10(2010) 2088-2106. [16]L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: A review, Sens. Actuators A-Phys. 267(2017) 242-261. [17]E.H. Morales, Y. He., M. Vinnichenko, B. Delley, U. Diebold, Surface structure of Sn-doped In2O3 (111) thin films by STM, New J. Phys. 10(2008) 125030. [18]GB. Gonzalez, TO. Mason, JP. Quintana, O. Warschkow, DE. Ellis, JH. Hwang, JP. Hodges, JD. Jorgensen, Defect structure studies of bulk and nano-indium-tin oxide, J. Appl. Phys. 96(2004) 3912-3920. [19]C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, CW. Zhou, In2O3 nanowires as chemical sensors, Appl. Phys. Lett. 82(2003) 1613-1615. [20]D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, CW. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices, Nano Lett. 4(2004) 1919-1924. [21]M Kaur, N Jain, K Sharma, S Bhattacharya, S. Bhattacharya, M. Roy, AK. Tyagi, SK. Gupta, JV. Yakhmi, Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers, Sens. Actuators B-Chem. 133(2008) 456-461. [22]Z. Zeng, K. Wang, Z. Zhang, J. Chen, W Zhou, The detection of H2S at room temperature by using individual indium oxide nanowire transistors, Nanotechnology 20(2009) 045503. [23]P. Gali, G. Sapkota, A.J. Syllaios, C. Littler, U. Philipose, Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires, Nanotechnology 24(2013) 225704. [24]A. Martucci, D. Buso, M. De. Monte, M. Guglielmi, C. Cantalini, C. Sada, Nanostructured sol-gel silica thin films doped with NiO and SnO2 for gas sensing applications, J. Mater. Chem. 14(2004) 2889-2895. [25]H. Tai, Y. Jiang, G. Xie, J. Yu, Preparation, characterization and comparative NH3-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films, J. Mater. Sci. & Tech. 26(2010) 605-613. [26]M. Matsuguchi, A. Okamoto, Y. Sakai, Effect of humidity on NH3 gas sensitivity of polyaniline blend films, Sens. Actuators B-Chem 94(2003) 46-52. [27]Q. Qi, Y.C. Zou, M.H. Fan, Y.P. Liu, S. Gao, P.P. Wang, Y.He, D.J., Wang, G.D. Li, Trimethylamine sensors with enhanced anti-humidity ability fabricated from La0.7Sr0.3FeO3 coated In2O3-SnO2 composite nanofibers, Sens. Actuators B-Chem. 203(2014) 111-117. [28]X.J. Yue, T.S. Hong, Z. Yang, S.P. Huang, Room temperature H2S micro-sensors with anti-humidity properties fabricated from NiO-In2O3 composite nanofibers, Chin. Sci. Bull. 58(2013) 821-826. [29]S. Vaidyanathan, J.Y. Cherng, A.C. Sun, C.Y. Chen, Bacteria-templated NiO nanoparticles/microstructure for an enzymeless glucose sensor, Int. J. Mol.Sci. 17(2016) UNSP 1104. [30]M. Iida, T. Ohtsuka, Ellipsometry of passive oxide films on nickel in acidic sulfate solution, Corros. Sci. 49(2007) 1408-1419. [31]H.R. Kim, A. Haensch, I.D. Kim, N. Barsan, U. Weimar, J.H.Lee, The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies, Adv. Funct. Mater. 21(2011) 4456-4463. [32]WebElements,'Nickel oxide'., 2018 (accessed 30 May 2018). [33]李翱翔,珍珠狀氧化鎳奈米顆粒鑲嵌於氧化銦奈米冰柱應用於高濕度室溫氣體感測器,中興大學材料科學與工程學系碩士論文(2015)。 [34]陳晢維,改變In2O3單晶奈米線形貌對於NO2氣體感測特性影響之研究,中興大學材料科學與工程學系碩士論文(2017)。 [35]J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y.C. Mao, S.C.I. Wang, Y. Shen, Y.X. Tong, Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes, Sci. Rep. 3(2013) 1021. [36]T. Zhang, M.Y. Wu, D.Y. Yan, J. Mao, H. Liu, W.B. Hu, X.W. Du, T. Ling, S.Z. Qiao, Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution, Nano Energy 43(2018) 103-109. [37]B. Zhao, X.K. Ke, J.H. Bao, C.L. Wang, L. Dong, Y.W. Chen, H.L. Chen, Synthesis of flower-like NiO and effects of morphology on Its catalytic properties, J. Phy. Chem. C 113(2009) 14440-14447. [38]J. Li, X. Qian, Y. Peng, J. Lin, Hierarchical structure NiO/CdS for highly performance H2 evolution, Mater. Lett. 224(2018) 82-85. [39]HAE Hagelin-Weaver, JF Weaver, GB Hoflund, GN Salaita, Electron energy loss spectroscopic investigation of Ni metal and NiO before and after surface reduction by Ar+ bombardment, J. Electron Spectrosc. Relat. Phenom. 134(2004)139-171. [40]Y. Park, V. Choong, Y. Gao, B.R. Hsieh, C.W. Tang, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy, Appl. Phy. Lett. 68(1996) 2699-2701. [41]Y. Cai, G. Zhang, Y.W. Zhang, Charge transfer and functionalization of monolayer InSe by physisorption of small molecules for gas sensing, J. Phy. Chem. C 121(2017) 10182-10193. [42]M. Sun, S. Xiong, X. Wu, C. He, T. Li, P.K. Chu, Enhanced photocatalytic oxygen evolution by crystal cutting, Adv. Mater. 25(2013) 2035-2039. [43]R. Schlaf, Calibration of photoemission spectra and work function determination., 2018 (accessed 30 May 2018). [44]Washington state university world class L. Scudiero, Ultraviolet photoelectron spectroscopy (UPS)-1., 2018 (accessed 30 May 2018).
本研究旨在探討環境濕度對氧化銦(In2O3)基奈米針之室溫氣體感測特性影響。吾人以氣相傳輸法製備n型In2O¬3半導體奈米針,再利用濕式化學法合成p型氧化鎳(NiO)半導體奈米顆粒鑲嵌於In2O3奈米針表面,於熱處理後獲得p-NiO/n-In2O3半導體異質接面結構。其中,In2O¬3奈米針之長徑比維持於6,NiO粒徑約為20 nm。比較純In2O3與1.1 vol.% NiO/In2O3對10-30 ppm 濃度的NO2氣體於室溫(25oC)、相對濕度17-80%之感測性質,發現In2O3奈米針在相對濕度17%的乾空氣環境,通入NO2後In2O3電阻上升,室溫之NO2靈敏度最高達到140.9;在相對濕度40-80%的潮濕空氣環境,通入NO2後電阻反而下降,靈敏度大幅降低至2.2,顯示純In2O3奈米針對環境濕度的明顯依存性,此外,以酸鹼試紙實驗間接證實電阻降低是因In2O3奈米針感測NO氣體所致。反之,1.1 vol.% NiO/In2O3複合奈米針則在相對濕度17-80%,通入NO2後電阻皆呈現上升,靈敏度自2.7僅略微上升至6.1,具備抗濕性,而修飾NiO於In2O3表面造成靈敏度下降之原因也將一併探討。另一方面,In2O3與1.1 vol.% NiO/In2O3奈米感測材料於室溫對還原性氣體H2S進行量測發現,調整相對濕度自11%提升至80%,In2O3對6 ppm H2S之靈敏度由2下降至1.04,NiO/In2O3對6 ppm H2S之靈敏度僅由1.35下降至1.07,皆為還原性氣體反應。顯示NiO/In2O3異質接面奈米針有利於降低室溫時對溼度的感測依存性。

This research examines in detail the effect of ambient humidity to room-temperature gas-sensing property of needle-like In2O3 and NiO/In2O3 nanostructures. The semiconducting n-type In2O3 nanoneedles were synthesized by vapor-transport method and were decorated with p-type NiO nanoparticles on the surface by chemical wet deposition followed by heat treatment. The aspect ratio of In2O3 nanoneedles was kept at 6.0 deliberately, and the diameter of NiO particles was about 20 nm. Comparing the pristine and the NiO-decorated In2O3, it was found that the electrical resistance of In2O3 increased upon exposure to oxidizing NO2 gas at room temperature under 17% relative humidity (dry air). The greatest sensitivity of the In2O3 nanostructure was 140.9. However, the electrical resistance of the pristine In2O3 nanosensors decreased with the presence of NO2 gas at room temperature when relative humidity of the ambient was increased to a range of 40 to 80% (wet air) and the sensitivity plummeted to 2.2, indicating a strong humidity-dependent gas-sensing behavior at room temperature. By using pH paper tests, it was believed that the In2O3 resistance decrease was caused by detection toward reducing nitrogen monoxide (MO) at the wet-air atmosphere. In contrast, electrical resistance of the NiO/In2O3 nanosensors was increased when exposed to NO2 over a broad range of relative humidity(17-80%), and the sensitivity was slightly increased from 2.7 to 6.1 with the relative humidity, as expected for n-type semiconductor in the presence of oxidizing gases. This result was referred to the anti-humidity of NiO/In2O3 heterostructure. In addition, both of the pristine and NiO/In2O3 nanosensors were examined against H2S gas at room temperature. Over a humidity range from 11 to 80%, the sensitivity of In2O3 against 6 ppm H2S decreased to 1.04 from 2, whilst, the sensitivity of NiO/In2O3 decreased to 1.07 from 1.35. The findings demonstrate that the NiO/In2O3 heterostructure nanoneedles are beneficial in terms of the reduced dependence on humidity for room-temperature gas-sensing.
Rights: 同意授權瀏覽/列印電子全文服務,2020-08-27起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066030-1.pdf6.25 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.