Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorSheng-Hsiang Linen_US
dc.identifier.citation[1] 林敬斌, '脂肪族聚酯與澱粉混煉之生物可分解性塑膠的擠壓加工探討,' 碩士, 生物工程學系(所), 大同大學, 台北市, 2009. [2] 張俐娜, '天然高分子改性材料及應用,' 化學工業出版社, 2006. [3] 李光榮、張原嘉、賴惠敏, 工業技術與資訊月刊 15卷 第12期, 2003. [4] K. Chrissafis, K. M. Paraskevopoulos, and D. N. Bikiaris, 'Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): Comparative study,' Thermochimica Acta, vol. 435, no. 2, pp. 142-150, 2005/09/15/ 2005. [5] J. H. Zhao, X. Q. Wang, J. Zeng, G. Yang, F. H. Shi, and Q. Yan, 'Biodegradation of poly(butylene succinate) in compost,' Journal of Applied Polymer Science, vol. 97, no. 6, pp. 2273-2278, 2005. [6] G. L. Wang, B. Gao, H. M. Ye, J. Xu, and B. Guo, Synthesis and Characterizations of Branched Poly(butylene succinate) Copolymers with 1,2-Octanediol Segments. 2010, pp. 2538-2544. [7] F. Li, S. Luo, C. Ma, J. Yu, and A. Cao, 'The crystallization and morphology of biodegradable poly(butylene succinate-co-terephthalate) copolyesters with high content of BT units,' Journal of Applied Polymer Science, vol. 118, no. 2, pp. 623-630, 2010. [8] B. Lepoittevin, N. Pantoustier, M. Alexandre, C. Calberg, R. Jérôme, and P. Dubois, 'Polyester layered silicate nanohybrids by controlled grafting polymerization,' J. Mater. Chem., vol. 12, no. 12, pp. 3528-3532, 2002. [9] J. H. Chen and M. C. Yang, 'Preparation and characterization of nanocomposite of maleated poly(butylene adipate-co-terephthalate) with organoclay,' Mater Sci Eng C Mater Biol Appl, vol. 46, pp. 301-8, Jan 2015. [10] G. Q. Chen and M. K. Patel, 'Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review,' Chemical Reviews, vol. 112, no. 4, pp. 2082-2099, 2012/04/11 2012. [11] S. Luo, F. Li, J. Yu, and A. Cao, 'Synthesis of poly(butylene succinate-co-butylene terephthalate) (PBST) copolyesters with high molecular weights via direct esterification and polycondensation,' Journal of Applied Polymer Science, vol. 115, no. 4, pp. 2203-2211, 2010. [12] Z. Wei, 'Lamellae evolution of poly(butylene succinate-co-terephthalate) copolymer induced by uniaxial stretching and subsequent heating,' RSC Adv., vol. 4, no. 110, pp. 64625-64633, 2014. [13] F. Li, X. Xu, Q. Hao, Q. Li, J. Yu, and A. Cao, 'Effects of comonomer sequential structure on thermal and crystallization behaviors of biodegradable poly(butylene succinate-co-butylene terephthalate)s,' Journal of Polymer Science Part B: Polymer Physics, vol. 44, no. 12, pp. 1635-1644, 2006. [14] J. Zhang, X. Wang, F. Li, and J. Yu, 'Mechanical properties and crystal structure transition of biodegradable poly(butylene succinate-co-terephthalate) (PBST) fibers,' Fibers and Polymers, vol. 13, no. 10, pp. 1233-1238, 2012. [15] K. Nagarajan, K. Levon, and A. Myerson, 'Nucleating Agents in Polypropylene,' Journal of Thermal Analysis and Calorimetry, vol. 59, no. 1-2, pp. 497-508, 2000/01/25 2000. [16] P. Pan, Z. Liang, A. Cao, and Y. Inoue, 'Layered metal phosphonate reinforced poly(L-lactide) composites with a highly enhanced crystallization rate,' ACS Appl Mater Interfaces, vol. 1, no. 2, pp. 402-11, Feb 2009. [17] K. J. Martin, P. J. Squattrito, and A. Clearfield, 'The crystal and molecular structure of zinc phenylphosphonate,' Inorganica Chimica Acta, vol. 155, no. 1, pp. 7-9, 1989/01/02/ 1989. [18] G. Cao, H. Lee, V. M. Lynch, and T. E. Mallouk, 'Synthesis and structural characterization of a homologous series of divalent-metal phosphonates, MII(O3PR).cntdot.H2O and MII(HO3PR)2,' Inorganic Chemistry, vol. 27, no. 16, pp. 2781-2785, 1988/08/01 1988. [19] D. M. Poojary and A. Clearfield, 'Coordinative Intercalation of Alkylamines into Layered Zinc Phenylphosphonate. Crystal Structures from X-ray Powder Diffraction Data,' Journal of the American Chemical Society, vol. 117, no. 45, pp. 11278-11284, 1995/11/01 1995. [20] Y. Zhang, K. J. Scott, and A. Clearfield, 'Intercalation of alkylamines into dehydrated and hydrated zinc phenyiphosphonates,' Journal of Materials Chemistry, vol. 5, no. 2, p. 315, 1995. [21] P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, 'Polymer-layered silicate nanocomposites: an overview,' Applied Clay Science, vol. 15, no. 1, pp. 11-29, 1999/09/01/ 1999. [22] M. Zanetti, S. Lomakin, and G. Camino, 'Polymer layered silicate nanocomposites,' Macromolecular Materials and Engineering, vol. 279, no. 1, p. 9, 2000. [23] Z. Tao, S. Yang, J. Chen, and L. Fan, 'Synthesis and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins,' European Polymer Journal, vol. 43, no. 4, pp. 1470-1479, 2007/04/01/ 2007. [24] Z. Wei, J. Lin, X. Wang, L. Huang, J. Yu, and F. Li, 'In situ polymerization of biodegradable poly(butylene-co-succinate terephthlate) nanocomposites and their real-time tracking of microstructure,' Composites Science and Technology, vol. 117, pp. 121-129, 2015. [25] Z. Wei, Y. Liu, X. Wang, J. Yu, and F. Li, 'Real-time tracking of the hierarchical structure of biodegradable poly(butylene succinate-co-terephthalate) nanocomposites with fibrous attapulgite nanoparticles,' Composites Science and Technology, vol. 134, pp. 201-208, 2016/10/06/ 2016. [26] Z. Wei, Z. Pan, F. Li, and J. Yu, 'Poly(butylene succinate-co-terephthalate) nanofibrous membrane composited with cyclodextrin polymer for superhydrophilic property,' RSC Advances, vol. 8, no. 3, pp. 1378-1384, 2018. [27] B. Rossenbeck, P. Ebbinghaus, M. Stratmann, and G. Grundmeier, 'Corrosion protection of Zn-phosphate containing water borne dispersion coatings on steel: Part 1: Design and analysis of model water based latex films on iron substrates,' Corrosion Science, vol. 48, no. 11, pp. 3703-3715, 2006/11/01/ 2006. [28] N. Wu and H. Wang, 'Effect of zinc phenylphosphonate on the crystallization behavior of poly(l-lactide),' Journal of Applied Polymer Science, vol. 130, no. 4, pp. 2744-2752, 2013. [29] Y. Chen, 'Modulated crystallization behavior, polymorphic crystalline structure and enzymatic degradation of poly(butylene adipate): Effects of layered metal phosphonate,' European Polymer Journal, vol. 72, pp. 222-237, 2015/11/01/ 2015. [30] W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, and P. Zugenmaier, 'Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers,' Macromolecules, vol. 23, no. 2, pp. 634-642, 1990/01/01 1990. [31] W. K. Goertzen and M. R. Kessler, 'Creep behavior of carbon fiber/epoxy matrix composites,' Materials Science and Engineering: A, vol. 421, no. 1, pp. 217-225, 2006/04/15/ 2006. [32] B. E. Read and P. E. Tomlins, 'Creep and physical aging of injection molded, fiber reinforced polypropylene,' Polymer Engineering & Science, vol. 37, no. 9, pp. 1572-1581, 2004. [33] B. A. Acha, M. M. Reboredo, and N. E. Marcovich, 'Creep and dynamic mechanical behavior of PP–jute composites: Effect of the interfacial adhesion,' Composites Part A: Applied Science and Manufacturing, vol. 38, no. 6, pp. 1507-1516, 2007/06/01/ 2007. [34] T. C. Yang, K. C. Hung, T. L. Wu, T. M. Wu, and J. H. Wu, 'A comparison of annealing process and nucleating agent (zinc phenylphosphonate) on the crystallization, viscoelasticity, and creep behavior of compression-molded poly(lactic acid) blends,' Polymer Degradation and Stability, vol. 121, pp. 230-237, 2015/11/01/ 2015. [35] Y. Kumagai and Y. Doi, 'Enzymatic degradation and morphologies of binary blends of microbial poly(3-hydroxy butyrate) with poly(ε-caprolactone), poly(1,4-butylene adipate and poly(vinyl acetate),' Polymer Degradation and Stability, vol. 36, no. 3, pp. 241-248, 1992/01/01/ 1992. [36] Y. Tokiwa, B. P. Calabia, C. U. Ugwu, and S. Aiba, 'Biodegradability of plastics,' Int J Mol Sci, vol. 10, no. 9, pp. 3722-42, Aug 26 2009. [37] Y.-A. Chen, E.-C. Chen, and T.-M. Wu, 'Organically modified layered zinc phenylphosphonate reinforced stereocomplex-type poly(lactic acid) nanocomposites with highly enhanced mechanical properties and degradability,' Journal of Materials Science, vol. 50, no. 23, pp. 7770-7778, 2015/12/01 2015. [38] B. Morgan Alexander and W. Gilman Jeffrey, 'Characterization of polymer‐layered silicate (clay) nanocomposites by transmission electron microscopy and X‐ray diffraction: A comparative study,' Journal of Applied Polymer Science, vol. 87, no. 8, pp. 1329-1338, 2002. [39] Y. Ando, K. Yoshikawa, T. Yoshikawa, M. Nishioka, R. Ishioka, and Y. Yakabe, 'Biodegradability of poly(tetramethylene succinate-co-tetramethylene adipate): I. Enzymatic hydrolysis,' Polymer Degradation and Stability, vol. 61, no. 1, pp. 129-137, 1998/01/01/ 1998. [40] C. Y. Ciou, S. Y. Li, and T. M. Wu, 'Morphology and degradation behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/layered double hydroxides composites,' European Polymer Journal, vol. 59, pp. 136-143, 2014/10/01/ 2014. [41] Y. A. Chen, D. L. Kuo, E. C. Chen, and T. M. Wu, 'Enhanced enzymatic degradation in nanocomposites of various organically-modified layered zinc phenylphosphonates and poly (butylene succinate-co-adipate),' Journal of Polymer Research, vol. 24, no. 12, p. 212, 2017/11/15 2017. [42] C. S. Wu, 'Process, Characterization and Biodegradability of Aliphatic Aromatic Polyester/Sisal Fiber Composites,' Journal of Polymers and the Environment, vol. 19, no. 3, pp. 706-713, 2011. [43] C. S. Wu, 'Antibacterial and static dissipating composites of poly(butylene adipate-co-terephthalate) and multi-walled carbon nanotubes,' Carbon, vol. 47, no. 13, pp. 3091-3098, 2009. [44] M. Lebourg, J. S. Antón, and J. L. G. Ribelles, 'Porous membranes of PLLA–PCL blend for tissue engineering applications,' European Polymer Journal, vol. 44, no. 7, pp. 2207-2218, 2008. [45] S. R. Mukai, H. Nishihara, and H. Tamon, 'Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals,' Chemical Communications, 10.1039/B316597C no. 7, pp. 874-875, 2004. [46] H. Nishihara, S. R. Mukai, D. Yamashita, and H. Tamon, 'Ordered Macroporous Silica by Ice Templating,' Chemistry of Materials, vol. 17, no. 3, pp. 683-689, 2005/02/01 2005. [47] J. W. Kim, K. Taki, S. Nagamine, and M. Ohshima, 'Preparation of poly(L-lactic acid) honeycomb monolith structure by unidirectional freezing and freeze-drying,' Chemical Engineering Science, vol. 63, no. 15, pp. 3858-3863, 2008. [48] Z. Bartczak and A. Galeski, 'Homogeneous nucleation in polypropylene and its blends by small-angle light scattering,' Polymer, vol. 31, no. 11, pp. 2027-2038, 1990/11/01/ 1990. [49] G. Bodor, 'Structural investigation of polymers,' (in English), 1991. [50] F. Li, S. Luo, and J. Yu, 'Mechanical, thermal properties and isothermal crystallization kinetics of biodegradable poly(butylene succinate-co-terephthalate) (PBST) fibers,' Journal of Polymer Research, vol. 17, no. 2, pp. 279-287, 2009. [51] Y. Long, R. A. Shanks, and Z. H. Stachurski, 'Kinetics of polymer crystallisation,' Progress in Polymer Science, vol. 20, no. 4, pp. 651-701, 1995/01/01/ 1995. [52] M. Avrami, 'Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei,' The Journal of Chemical Physics, vol. 8, no. 2, pp. 212-224, 1940/02/01 1940. [53] W. D. Lee, E. S. Yoo, and S. S. Im, 'Crystallization behavior and morphology of poly(ethylene 2,6-naphthalate),' Polymer, vol. 44, no. 21, pp. 6617-6625, 2003/10/01/ 2003. [54] R. C. Clarke, K. Latham, C. J. Rix, and M. Hobday, 'Heterocyclic Amine Derivatives of Zinc Organophosphonates,' Chemistry of Materials, vol. 16, no. 12, pp. 2463-2470, 2004/06/01 2004. [55] J. Morizzi, M. Hobday, and C. Rix, Gallium(III) organophosphonate adducts with the bidentate amines 2,2′-bipyridyl and 1,10-phenanthroline. 2001, pp. 67-74. [56] J. Morizzi, M. Hobday, and C. Rix, 'Some bidentate amine adducts of indium() organophosphonates,' Journal of Materials Chemistry, 10.1039/B007823I vol. 11, no. 3, pp. 794-798, 2001. [57] J. W. Nibler, 'Infrared absorption spectroscopy. Second edition (Nakanishi, Koji),' Journal of Chemical Education, vol. 55, no. 8, p. A316, 1978/08/01 1978. [58] K. J. Frink, R. C. Wang, J. L. Colon, and A. Clearfield, 'Intercalation of ammonia into zinc and cobalt phenylphosphonates,' Inorganic Chemistry, vol. 30, no. 7, pp. 1438-1441, 1991/04/01 1991. [59] R. G. Alamo and L. Mandelkern, 'Crystallization kinetics of random ethylene copolymers,' Macromolecules, vol. 24, no. 24, pp. 6480-6493, 1991/11/01 1991. [60] P. J. Hocking, R. H. Marchessault, M. R. Timmins, R. W. Lenz, and R. C. Fuller, 'Enzymatic Degradation of Single Crystals of Bacterial and Synthetic Poly(β-hydroxybutyrate),' Macromolecules, vol. 29, no. 7, pp. 2472-2478, 1996/01/01 1996. [61] J. P. Zheng, C. Z. Wang, X. X. Wang, H. Y. Wang, H. Zhuang, and K. D. Yao, 'Preparation of biomimetic three-dimensional gelatin/montmorillonite–chitosan scaffold for tissue engineering,' Reactive and Functional Polymers, vol. 67, no. 9, pp. 780-788, 2007.zh_TW
dc.description.abstract聚對苯二甲酸丁二酸丁二酯共聚合物(Poly(butylene succinate-co-terephthalate),PBST)為對苯二甲酸和琥珀酸組合之共聚物,屬於半結晶且微生物可分解之材料,可被微生物分解成水和二氧化碳,此外,本研究添加具補強效果之無機材料層狀苯基磷酸鋅製備出生物可分解奈米複合材料以增加其應用方面與使用價值。 首先利用共沉澱法製備層狀苯基磷酸鋅(Layered Zinc Phenylphosphonate,PPZn),並使用化學改質法將己烷二胺及十二烷基二胺插層進入PPZn形成有機改質C6-PPZn和C12-PPZn。利用XRD研究 PPZn與其改質PPZn在(0 1 0)繞射平面之繞射峰位置,PPZn未插層之層間距為14.34 Å,改質後C6-PPZn和C12-PPZn分別增加至22.31和16.07 nm,由FT-IR圖譜得知改質PPZn較未改質PPZn多了額外吸收峰在波數為2853-3005和1650-1550是因為長鏈烷基胺所致,經由上述之數據證明本實驗成功使用化學改質法形成較大層間距之層狀PPZn。 經由溶劑插層法將PBST-g-AA與不同比例之C12-PPZn、C16-PPZn和C18-PPZn形成奈米複合材料,由XRD圖譜及TEM影像可以判斷改質PPZn以部分剝離與部分插層且隨機分散於PBST 基材中,形成奈米複合材料且添加改質PPZn並部會改變PBST之結晶結構。 透過示差掃描式熱分析儀(DSC)觀察添加入不同比例C6-PPZn及C12-PPZn對於PBST之等溫結晶行為影響,發現添加改質PPZn後亦屬於二維空間片狀晶體成長方式並會加速PBST之結晶。 降解測試為利用假單胞菌(Lipase from Pseudomonas fluorescens)酵素酶作為降解液,再進行PBST及其奈米複合材料之生物降解測試,觀察其重量損失與降解時間之變化,得知PBST之降解速率會隨著改質PPZn含量上升而降解速率越快,而以改質PPZn相比,C6-PPZn之降解速率較快,主要原因是為PBST/C6-PPZn結晶度較低,造成其降解速率較快。 藉由單向冷凍及冷凍乾燥技術製備出多孔形貌之PBST及其奈米複合材料,並進行生物降解測試,可發現添加越多之改質PPZn,會使降解速率上升。zh_TW
dc.description.abstractPoly(butylene succinate-co-terephthalate) (PBST), a semicrystalline copolymer and biodegradable, can be synthesized using terephthalic acid and butylene succinic acid. Biodegradable PBST can be degraded by microorganisms to form carbon dioxide and water. For the purpose of enhancing the physical properties of PBST, the inorganic layered zinc phenylphosphonate (PPZn) was added into the PBST polymer matrix. In this work, the organically-modified layered zinc phenylphosphonate prepared using coprecipitation method were sucessfully synthesized to intercalate diaminohexane and dodecanediamine into the interlayer spacing of PPZn (designated as C6-PPZn and C12-PPZn). The interlayer spacing of PPZn determined by wide-angle X-ray diffraction (WAXD) was increased from 14.34 Å for PPZn to 22.31 and 16.07 Å for C6-PPZn and C12-PPZn, respectively. The FT-IR spectra of modified-PPZn contain absorption bands at 2830-3000 and 1650-1550 cm-1 for the C-H stretching vibration and NH2 deformation of diaminohexane and dodecanediamine. Compare to that PPZn, the additional absorption peaks are attributed to diaminohexane and dodecanediamine in corporation into PPZn. The PBST-g-AA/modified-PPZn nanocomposites were prepared by solvent intercalation method. The structure and morphology of the PBST-g-AA/modified-PPZn nanocomposites were characterized using WAXD and transmission electron microscopy (TEM). Both WAXD and TEM results demonstrate that most of the partial-delamination modified-PPZn was randomly dispersed in the PBST matrix and the incorporation of modified-PPZn into PBST did not change the crystalline structure of the nanocomposites. Crystallization behavior was performed using the differential scanning calorimetry (DSC). The n value of nanocomposite is close to 2, suggesting that the PBST spherulite grows with a 2-dimensional structure. Degradation tests using Lipase from Pseudomonas fluorescens as the enzyme enzymatic degradation solution. The weight loss of PBST increase with an increase in the content of modified-PPZn. The C6-PPZn nanocomposites has a faster degradation rate. This result is probably due to the lower degree of crystallinity for C6-PPZn nanocomposites. The PBST and its nanocomposites with porous morphology were successfully fabricated by combining pseudo steady state unidirectional freezing and freeze-drying techniques. The weight loss of PBST increase with an increase in the content of modified-PPZn.en_US
dc.description.tableofcontents致謝 i 摘要 ii Abstract iv 目錄 vi 表目錄 xi 圖目錄 xv 第一章 緒論及簡介 1 1.1 前言 1 1.2 生物可分解高分子 3 1.3 聚對苯二甲酸丁二酸丁二酯共聚合物(Poly(butylene succinate-co-terephthalate),PBST)介紹 5 1.4 層狀苯基磷酸鋅(Layered Zinc Phenylphosphonate,PPZn)和其改質之介紹 10 第二章 文獻回顧及基礎理論 13 2.1 有機/無機奈米複合材料 13 2.2 高分子共聚物PBST奈米複合材料 15 2.3 高分子/層狀苯基磷酸鋅(PPZn)之奈米複合材料 24 2.4 高分子接枝丙烯酸之複合材料 41 2.5 冷凍乾燥製備多孔性生物可分解高分子 46 2.6 高分子結晶動力學 50 2.6.1 Avrami方程式 51 2.7 研究動機與方向 53 第三章 實驗方法與步驟 55 3.1 實驗材料 55 3.2 實驗儀器 57 3.3 實驗架構 58 3.4 實驗方法與步驟 59 3.4.1 聚對苯二甲酸丁二酸丁二酯共聚合物之製備 59 3.4.2 聚對苯二甲酸丁二酸丁二酯共聚合物之接枝 60 3.4.3 聚對苯二甲酸丁二酸丁二酯共聚合物接枝丙烯酸之接枝率測定 60 3.4.4 層狀苯基磷酸鋅之製備 61 3.4.5 有機改質苯基磷酸鋅之製備 61 3.4.6 利用溶劑成膜製備聚對苯二甲酸丁二酸丁二酯共聚合物/有機改質苯基磷酸鋅之奈米複合材料 62 3.4.7 利用冷凍乾燥製備多孔性苯二甲酸丁二酸丁二酯共聚合物/有機改質苯基磷酸鋅之奈米複合材料 62 3.4.8 高分子之生物降解實驗 63 3.5 實驗儀器分析 64 3.5.1 廣角X光繞射儀(Wide Angle X-Ray Diffraction,WAXD) 64 3.5.2 超導磁場核磁共振儀(Nuclear Magnetic Resonance,NMR) 64 3.5.3 膠體滲透層析儀 (Gel Permeation Chromatography,GPC) 65 3.5.4 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer,FT-IR) 65 3.5.5 示差掃描式熱分析儀 (Different scanning calorimeter,DSC) 66 3.5.6 穿透式電子顯微鏡 (Transmission Electron Microscope,TEM) 66 3.5.7 場發射掃描式電子顯微鏡 (Field-emmision Scanning electronic microscopy,FE-SEM) 66 3.5.8 熱重分析儀 (Thermogravimetric analysis,TGA) 67 第四章 結果與討論 68 4.1 PPZn製備與改質之結構分析 68 4.2 聚對苯二甲酸丁二酸丁二酯共聚合物PBST 70與其奈米複合材料之特性研究探討 73 4.2.1 聚對苯二甲酸丁二酸丁二酯共聚合物PBST70之組成與結構鑑定 73 4.2.2 聚對苯二甲酸丁二酸丁二酯共聚合物接枝丙烯酸PBST70- g-AA之鑑定分析 75 4.2.3 PBST70-g-AA添加C6-PPZn之奈米複合材料之分散性研究 77 4.2.4 PBST70-g-AA添加C12-PPZn之奈米複合材料之分散性研究 80 4.2.5 PBST70-g-AA添加C6-PPZn之奈米複合材料之等溫結晶行為探討 82 4.2.6 PBST70-g-AA添加C12-PPZn之奈米複合材料之等溫結晶行為探討 90 4.2.7 PBST70-g-AA添加C6-PPZn之奈米複合材料之生物降解測試 98 4.2.8 PBST70-g-AA添加C12-PPZn之奈米複合材料之生物降解測試 106 4.3 聚對苯二甲酸丁二酸丁二酯共聚合物PBST 50與其奈米複合材料之特性研究探討 113 4.3.1 聚對苯二甲酸丁二酸丁二酯共聚合物PBST50之組成與結構鑑定 113 4.3.2 聚對苯二甲酸丁二酸丁二酯共聚合物接枝丙烯酸PBST50- g-AA之鑑定分析 115 4.3.3 PBST50-g-AA添加C6-PPZn之奈米複合材料之分散性研究 117 4.3.4 PBST50-g-AA添加C12-PPZn之奈米複合材料之分散性研究 119 4.3.5 PBST50-g-AA添加C6-PPZn之奈米複合材料之等溫結晶行為探討 121 4.3.6 PBST50-g-AA添加C12-PPZn之奈米複合材料之等溫結晶行為探討 129 4.3.7 PBST50-g-AA添加C6-PPZn之奈米複合材料之生物降解測試 137 4.3.8 PBST50-g-AA添加C12-PPZn之奈米複合材料之生物降解測試 144 4.3.9 冷凍乾燥PBST50-g-AA添加C6-PPZn之奈米複合材料之生物降解測試 151 4.3.10 冷凍乾燥PBST50-g-AA添加C12-PPZn之奈米複合材料之生物降解測試 154 4.4 聚對苯二甲酸丁二酸丁二酯共聚合物PBST 30與其奈米複合材料之特性研究探討 157 4.4.1 聚對苯二甲酸丁二酸丁二酯共聚合物PBST30之組成與結構鑑定 157 4.4.2 聚對苯二甲酸丁二酸丁二酯共聚合物接枝丙烯酸PBST30- g-AA之鑑定分析 159 4.4.3 PBST30-g-AA添加C6-PPZn之奈米複合材料之分散性研究 161 4.4.4 PBST30-g-AA添加C12-PPZn之奈米複合材料之分散性研究 163 4.4.5 PBST30-g-AA添加C6-PPZn之奈米複合材料之等溫結晶行為探討 165 4.4.6 PBST30-g-AA添加C12-PPZn之奈米複合材料之等溫結晶行為探討 173 4.4.7 PBST30-g-AA添加C6-PPZn之奈米複合材料之生物降解測試 181 4.4.8 PBST30-g-AA添加C12-PPZn之奈米複合材料之生物降解測試 188 4.4.9 冷凍乾燥PBST30-g-AA添加C6-PPZn之奈米複合材料之生物降解測試 195 4.4.10 冷凍乾燥PBST30-g-AA添加C12-PPZn之奈米複合材料之生物降解測試 198 第五章 結論 201 參考文獻 203zh_TW
dc.subjectPoly(butylene succinate-co-terephthalate)en_US
dc.subjectLayered zinc phenylphosphonateen_US
dc.subjectCrystalline behaviorsen_US
dc.titlePreparation and characterization of organically modified layered zinc phenylphosphonate/ poly(butylene succinate-co-terephthalate) nanocompositesen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:材料科學與工程學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066059-1.pdf12.45 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.