Please use this identifier to cite or link to this item:
標題: 自發高有序之仿生表面皺褶型態製備
Spontaneous Formation of Stable Aligned Wrinkles
作者: 陳明雄
Ming-Shiung Chen
關鍵字: 皺褶;有序性;濕式製程;wrinkle;well-ordered;wet approach
引用: [1] E. Cerda, L. Mahadevan, 'Geometry and physics of wrinkling', Physical Review Letters,90, (2003), 074302. [2] S. Eran, M. Marder, H.L. Swinney, 'Leaves, flowers and garbage bags: making waves', American Scientist,92, (2004), 254. [3] B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, 'Mechanics of morphological instabilities and surface wrinkling in soft materials: a review', Soft Matter,8, (2012), 5728-5745. [4] Q. Wang, X. Zhao, 'A three-dimensional phase diagram of growth-induced surface instabilities', Scientific reports,5, (2015), 8887. [5] J.Y. Chung, A.J. Nolte, C.M. Stafford, 'Surface wrinkling: a versatile platform for measuring thin‐film properties', Advanced Materials,23, (2011), 349-368. [6] A. Volynskii, S. Bazhenov, O. Lebedeva, N. Bakeev, 'Mechanical buckling instability of thin coatings deposited on soft polymer substrates', Journal of Materials Science,35, (2000), 547-554. [7] R. Huang, 'Kinetic wrinkling of an elastic film on a viscoelastic substrate', Journal of the Mechanics and Physics of Solids,53, (2005), 63-89. [8] R. Huang, Z. Suo, 'Wrinkling of a compressed elastic film on a viscous layer', Journal of Applied Physics,91, (2002), 1135-1142. [9] Y. Rahmawan, C.-M. Chen, S. Yang, 'Recent advances in wrinkle-based dry adhesion', Soft Matter,10, (2014), 5028-5039. [10] S.G. Lee, D.Y. Lee, H.S. Lim, D.H. Lee, S. Lee, K. Cho, 'Switchable transparency and wetting of elastomeric smart windows', Advanced Materials,22, (2010), 5013-5017. [11] C. Lu, H. Möhwald, A. Fery, 'A lithography-free method for directed colloidal crystal assembly based on wrinkling', Soft Matter,3, (2007), 1530-1536. [12] C.M. Stafford, B.D. Vogt, C. Harrison, D. Julthongpiput, R. Huang, 'Elastic moduli of ultrathin amorphous polymer films', Macromolecules,39, (2006), 5095-5099. [13] Y. Gan, X. Jiang, J. Yin, 'Self-wrinkling patterned surface of photocuring coating induced by the fluorinated POSS containing thiol groups (F-POSS-SH) as the reactive nanoadditive', Macromolecules,45, (2012), 7520-7526. [14] T. Ohzono, H. Monobe, Y. Shimizu, 'Liquid crystal alignment on self-organized microwrinkles', Applied Physics Express,1, (2008), 065001. [15] T. Ohzono, H. Monobe, R. Yamaguchi, Y. Shimizu, H. Yokoyama, 'Dynamics of surface memory effect in liquid crystal alignment on reconfigurable microwrinkles', Applied Physics Letters,95, (2009), 014101. [16] Y. Sun, W.M. Choi, H. Jiang, Y.Y. Huang, J.A. Rogers, 'Controlled buckling of semiconductor nanoribbons for stretchable electronics', Nature Nanotechnology,1, (2006), 201. [17] J.R. Serrano, Q. Xu, D.G. Cahill, 'Stress-induced wrinkling of sputtered SiO 2 films on polymethylmethacrylate', Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,24, (2006), 324-327. [18] J. Kim, H.H. Lee, 'Wave formation by heating in thin metal film on an elastomer', Journal of Polymer Science Part B: Polymer Physics,39, (2001), 1122-1128. [19] L. Zhang, X. Lang, A. Hirata, M. Chen, 'Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement', ACS Nano,5, (2011), 4407-4413. [20] T. Ohzono, M. Shimomura, 'Ordering of microwrinkle patterns by compressive strain', Physical Review B,69, (2004), 132202. [21] T. Ohzono, M. Shimomura, 'Geometry-dependent stripe rearrangement processes induced by strain on preordered microwrinkle patterns', Langmuir,21, (2005), 7230-7237. [22] W.M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y.Y. Huang, J.A. Rogers, 'Biaxially stretchable 'wavy' silicon nanomembranes', Nano Letters,7, (2007), 1655-1663. [23] N. Uchida, T. Ohzono, 'Orientational ordering of buckling-induced microwrinkles on soft substrates', Soft Matter,6, (2010), 5729-5735. [24] E.P. Chan, A.J. Crosby, 'Fabricating microlens arrays by surface wrinkling', Advanced Materials,18, (2006), 3238-3242. [25] J.Y. Chung, T.Q. Chastek, M.J. Fasolka, H.W. Ro, C.M. Stafford, 'Quantifying residual stress in nanoscale thin polymer films via surface wrinkling', Acs Nano,3, (2009), 844-852. [26] J.Y. Chung, A.J. Nolte, C.M. Stafford, 'Diffusion‐Controlled, Self‐Organized Growth of Symmetric Wrinkling Patterns', Advanced Materials,21, (2009), 1358-1362. [27] D. Breid, A.J. Crosby, 'Surface wrinkling behavior of finite circular plates', Soft Matter,5, (2009), 425-431. [28] H. Vandeparre, P. Damman, 'Wrinkling of stimuloresponsive surfaces: Mechanical instability coupled to diffusion', Physical Review Letters,101, (2008), 124301. [29] N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, 'Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer', Nature,393, (1998), 146. [30] S. Yang, K. Khare, P.C. Lin, 'Harnessing surface wrinkle patterns in soft matter', Advanced Functional Materials,20, (2010), 2550-2564. [31] Y. Tokudome, H. Kuniwaki, K. Suzuki, D. Carboni, G. Poologasundarampillai, M. Takahashi, 'Thermoresponsive Wrinkles on Hydrogels for Soft Actuators', Advanced Materials Interfaces,3, (2016). [32] H.S. Kim, A.J. Crosby, 'Solvent‐Responsive Surface via Wrinkling Instability', Advanced Materials,23, (2011), 4188-4192. [33] J. Tang, H. Guo, M. Chen, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, W. Zhang, 'Wrinkled Ag nanostructured gratings towards single molecule detection by ultrahigh surface Raman scattering enhancement', Sensors and Actuators B: Chemical,218, (2015), 145-151. [34] F. Greco, L. Ventrelli, P. Dario, B. Mazzolai, V. Mattoli, 'Micro-wrinkled palladium surface for hydrogen sensing and switched detection of lower flammability limit', International Journal of Hydrogen Energy,37, (2012), 17529-17539. [35] Y. Meng, Z.B. Li, X. Chen, J.P. Chen, 'Reducing wrinkles and cracks of metal films on PDMS substrate by hexane extraction and oxygen plasma etching', Microelectronic Engineering,130, (2014), 8-12. [36] J. García-Gallegos, J. Nieto-Navarro, E. Araujo-Palomo, M. Zamora-Antuñano, J. Olivares-Ramírez, A. Encinas, 'Flexible conductive films fabricated by evaporation on partially cured polydimethyl-siloxane', Materials Letters,115, (2014), 100-102. [37] F. Greco, T. Fujie, L. Ricotti, S. Taccola, B. Mazzolai, V. Mattoli, 'Microwrinkled conducting polymer interface for anisotropic multicellular alignment', ACS Applied Materials & Interfaces,5, (2013), 573-584. [38] M.A. Reyes-Martinez, A.J. Crosby, A.L. Briseno, 'Rubrene crystal field-effect mobility modulation via conducting channel wrinkling', Nature Communications,6, (2015), 6948. [39] H. Ryu, S.J. Cho, B. Kim, G. Lim, 'A stretchable humidity sensor based on a wrinkled polyaniline nanostructure', RSC Advances,4, (2014), 39767-39770. [40] J.B. Kim, P. Kim, N.C. Pégard, S.J. Oh, C.R. Kagan, J.W. Fleischer, H.A. Stone, Y.-L. Loo, 'Wrinkles and deep folds as photonic structures in photovoltaics', Nature Photonics,6, (2012), 327. [41] Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, G. Zhang, 'Super-elastic graphene ripples for flexible strain sensors', ACS Nano,5, (2011), 3645-3650. [42] B.H. Kim, Y. Choi, J.Y. Kim, H. Shin, S. Kim, S.W. Son, S.O. Kim, P. Kim, 'Wrinkle‐directed self‐assembly of block copolymers for aligning of nanowire arrays', Advanced Materials,26, (2014), 4665-4670. [43] S.F. Ahmed, G.-H. Rho, K.-R. Lee, A. Vaziri, M.-W. Moon, 'High aspect ratio wrinkles on a soft polymer', Soft Matter,6, (2010), 5709-5714. [44] C. Yu, C. Masarapu, J. Rong, B. Wei, H. Jiang, 'Stretchable supercapacitors based on buckled single‐walled carbon‐nanotube macrofilms', Advanced Materials,21, (2009), 4793-4797. [45] H.J. Bae, S. Bae, C. Park, S. Han, J. Kim, L.N. Kim, K. Kim, S.H. Song, W. Park, S. Kwon, 'Biomimetic Microfingerprints for Anti‐Counterfeiting Strategies', Advanced Materials,27, (2015), 2083-2089. [46] E.P. Chan, E.J. Smith, R.C. Hayward, A.J. Crosby, 'Surface wrinkles for smart adhesion', Advanced Materials,20, (2008), 711-716.
題,本研究計畫建構於仿生(biomimetic)的概念,建立一新穎性濕式製程的方式, 結合材料化學反應,來製備具高規則排列與大面積的表面皺褶(wrinkle)型態,以期應用於拉伸式光電元件與乾式吸附等應用。本研究開發一新穎濕式製程,透過選擇一水溶性高分子做為犧牲層,緊接著依序將硬質材料與軟性基材,如矽膠(PDMS)披覆於高分子犧牲層上,將整體材料至於水相中使高分子犧牲層緩慢溶解,於溶解過程中會形成一穩定且持續性的應力累積,使材料表面皺褶化(wrinkling),透過材料軟硬度與塗佈製程的控制,使自發產生的皺褶型態具有高規則排整而具有光子晶體的特性,此一濕式製程不需高真空設備,具低成本、便利性與大面積製備等特性,利於工業發展,於軟性電子元件與仿生電子皮膚具有極大的應用潛力。

Here, we develop a new 'wet approach' for the design of skin-like, large-area, and well-ordered polymer-based nanohybrids materials with photonic crystal property. Wrinkles or folds appear when skin is deformed due to muscle contraction or some outside mechanical deformation; they disappear after the deformation is removed. This latter phenomenon is a type of mechanical instability that develops in response to the applied stress (thermal, mechanical, or osmotic), showing unique, periodic surface patterns. By combination of polymer self-assembly and wrinkling, highly ordered lamellar polymer-based wrinkle morphology will be fabricated after releasing stress. Their wavelength and amplitude could be controlled by tuning their thickness and hardness degree. As a result, the wrinkle nanohybrids with flexible and stretchable characters should give the potential applications for sensing and mechanical devices such as mechanochromic sensors, surface enhanced Raman scattering, and gecko-like adhesives.
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-23起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066063-1.pdf6.55 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.