Please use this identifier to cite or link to this item:
標題: 自發高有序之仿生表面皺褶型態製備
Spontaneous Formation of Stable Aligned Wrinkles
作者: 陳明雄
Ming-Shiung Chen
關鍵字: 皺褶;有序性;濕式製程;wrinkle;well-ordered;wet approach
引用: [1] E. Cerda, L. Mahadevan, 'Geometry and physics of wrinkling', Physical Review Letters,90, (2003), 074302. [2] S. Eran, M. Marder, H.L. Swinney, 'Leaves, flowers and garbage bags: making waves', American Scientist,92, (2004), 254. [3] B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, 'Mechanics of morphological instabilities and surface wrinkling in soft materials: a review', Soft Matter,8, (2012), 5728-5745. [4] Q. Wang, X. Zhao, 'A three-dimensional phase diagram of growth-induced surface instabilities', Scientific reports,5, (2015), 8887. [5] J.Y. Chung, A.J. Nolte, C.M. Stafford, 'Surface wrinkling: a versatile platform for measuring thin‐film properties', Advanced Materials,23, (2011), 349-368. [6] A. Volynskii, S. Bazhenov, O. Lebedeva, N. Bakeev, 'Mechanical buckling instability of thin coatings deposited on soft polymer substrates', Journal of Materials Science,35, (2000), 547-554. [7] R. Huang, 'Kinetic wrinkling of an elastic film on a viscoelastic substrate', Journal of the Mechanics and Physics of Solids,53, (2005), 63-89. [8] R. Huang, Z. Suo, 'Wrinkling of a compressed elastic film on a viscous layer', Journal of Applied Physics,91, (2002), 1135-1142. [9] Y. Rahmawan, C.-M. Chen, S. Yang, 'Recent advances in wrinkle-based dry adhesion', Soft Matter,10, (2014), 5028-5039. [10] S.G. Lee, D.Y. Lee, H.S. Lim, D.H. Lee, S. Lee, K. Cho, 'Switchable transparency and wetting of elastomeric smart windows', Advanced Materials,22, (2010), 5013-5017. [11] C. Lu, H. Möhwald, A. Fery, 'A lithography-free method for directed colloidal crystal assembly based on wrinkling', Soft Matter,3, (2007), 1530-1536. [12] C.M. Stafford, B.D. Vogt, C. Harrison, D. Julthongpiput, R. Huang, 'Elastic moduli of ultrathin amorphous polymer films', Macromolecules,39, (2006), 5095-5099. [13] Y. Gan, X. Jiang, J. Yin, 'Self-wrinkling patterned surface of photocuring coating induced by the fluorinated POSS containing thiol groups (F-POSS-SH) as the reactive nanoadditive', Macromolecules,45, (2012), 7520-7526. [14] T. Ohzono, H. Monobe, Y. Shimizu, 'Liquid crystal alignment on self-organized microwrinkles', Applied Physics Express,1, (2008), 065001. [15] T. Ohzono, H. Monobe, R. Yamaguchi, Y. Shimizu, H. Yokoyama, 'Dynamics of surface memory effect in liquid crystal alignment on reconfigurable microwrinkles', Applied Physics Letters,95, (2009), 014101. [16] Y. Sun, W.M. Choi, H. Jiang, Y.Y. Huang, J.A. Rogers, 'Controlled buckling of semiconductor nanoribbons for stretchable electronics', Nature Nanotechnology,1, (2006), 201. [17] J.R. Serrano, Q. Xu, D.G. Cahill, 'Stress-induced wrinkling of sputtered SiO 2 films on polymethylmethacrylate', Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,24, (2006), 324-327. [18] J. Kim, H.H. Lee, 'Wave formation by heating in thin metal film on an elastomer', Journal of Polymer Science Part B: Polymer Physics,39, (2001), 1122-1128. [19] L. Zhang, X. Lang, A. Hirata, M. Chen, 'Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement', ACS Nano,5, (2011), 4407-4413. [20] T. Ohzono, M. Shimomura, 'Ordering of microwrinkle patterns by compressive strain', Physical Review B,69, (2004), 132202. [21] T. Ohzono, M. Shimomura, 'Geometry-dependent stripe rearrangement processes induced by strain on preordered microwrinkle patterns', Langmuir,21, (2005), 7230-7237. [22] W.M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y.Y. Huang, J.A. Rogers, 'Biaxially stretchable 'wavy' silicon nanomembranes', Nano Letters,7, (2007), 1655-1663. [23] N. Uchida, T. Ohzono, 'Orientational ordering of buckling-induced microwrinkles on soft substrates', Soft Matter,6, (2010), 5729-5735. [24] E.P. Chan, A.J. Crosby, 'Fabricating microlens arrays by surface wrinkling', Advanced Materials,18, (2006), 3238-3242. [25] J.Y. Chung, T.Q. Chastek, M.J. Fasolka, H.W. Ro, C.M. Stafford, 'Quantifying residual stress in nanoscale thin polymer films via surface wrinkling', Acs Nano,3, (2009), 844-852. [26] J.Y. Chung, A.J. Nolte, C.M. Stafford, 'Diffusion‐Controlled, Self‐Organized Growth of Symmetric Wrinkling Patterns', Advanced Materials,21, (2009), 1358-1362. [27] D. Breid, A.J. Crosby, 'Surface wrinkling behavior of finite circular plates', Soft Matter,5, (2009), 425-431. [28] H. Vandeparre, P. Damman, 'Wrinkling of stimuloresponsive surfaces: Mechanical instability coupled to diffusion', Physical Review Letters,101, (2008), 124301. [29] N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, 'Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer', Nature,393, (1998), 146. [30] S. Yang, K. Khare, P.C. Lin, 'Harnessing surface wrinkle patterns in soft matter', Advanced Functional Materials,20, (2010), 2550-2564. [31] Y. Tokudome, H. Kuniwaki, K. Suzuki, D. Carboni, G. Poologasundarampillai, M. Takahashi, 'Thermoresponsive Wrinkles on Hydrogels for Soft Actuators', Advanced Materials Interfaces,3, (2016). [32] H.S. Kim, A.J. Crosby, 'Solvent‐Responsive Surface via Wrinkling Instability', Advanced Materials,23, (2011), 4188-4192. [33] J. Tang, H. Guo, M. Chen, J. Yang, D. Tsoukalas, B. Zhang, J. Liu, C. Xue, W. Zhang, 'Wrinkled Ag nanostructured gratings towards single molecule detection by ultrahigh surface Raman scattering enhancement', Sensors and Actuators B: Chemical,218, (2015), 145-151. [34] F. Greco, L. Ventrelli, P. Dario, B. Mazzolai, V. Mattoli, 'Micro-wrinkled palladium surface for hydrogen sensing and switched detection of lower flammability limit', International Journal of Hydrogen Energy,37, (2012), 17529-17539. [35] Y. Meng, Z.B. Li, X. Chen, J.P. Chen, 'Reducing wrinkles and cracks of metal films on PDMS substrate by hexane extraction and oxygen plasma etching', Microelectronic Engineering,130, (2014), 8-12. [36] J. García-Gallegos, J. Nieto-Navarro, E. Araujo-Palomo, M. Zamora-Antuñano, J. Olivares-Ramírez, A. Encinas, 'Flexible conductive films fabricated by evaporation on partially cured polydimethyl-siloxane', Materials Letters,115, (2014), 100-102. [37] F. Greco, T. Fujie, L. Ricotti, S. Taccola, B. Mazzolai, V. Mattoli, 'Microwrinkled conducting polymer interface for anisotropic multicellular alignment', ACS Applied Materials & Interfaces,5, (2013), 573-584. [38] M.A. Reyes-Martinez, A.J. Crosby, A.L. Briseno, 'Rubrene crystal field-effect mobility modulation via conducting channel wrinkling', Nature Communications,6, (2015), 6948. [39] H. Ryu, S.J. Cho, B. Kim, G. Lim, 'A stretchable humidity sensor based on a wrinkled polyaniline nanostructure', RSC Advances,4, (2014), 39767-39770. [40] J.B. Kim, P. Kim, N.C. Pégard, S.J. Oh, C.R. Kagan, J.W. Fleischer, H.A. Stone, Y.-L. Loo, 'Wrinkles and deep folds as photonic structures in photovoltaics', Nature Photonics,6, (2012), 327. [41] Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, G. Zhang, 'Super-elastic graphene ripples for flexible strain sensors', ACS Nano,5, (2011), 3645-3650. [42] B.H. Kim, Y. Choi, J.Y. Kim, H. Shin, S. Kim, S.W. Son, S.O. Kim, P. Kim, 'Wrinkle‐directed self‐assembly of block copolymers for aligning of nanowire arrays', Advanced Materials,26, (2014), 4665-4670. [43] S.F. Ahmed, G.-H. Rho, K.-R. Lee, A. Vaziri, M.-W. Moon, 'High aspect ratio wrinkles on a soft polymer', Soft Matter,6, (2010), 5709-5714. [44] C. Yu, C. Masarapu, J. Rong, B. Wei, H. Jiang, 'Stretchable supercapacitors based on buckled single‐walled carbon‐nanotube macrofilms', Advanced Materials,21, (2009), 4793-4797. [45] H.J. Bae, S. Bae, C. Park, S. Han, J. Kim, L.N. Kim, K. Kim, S.H. Song, W. Park, S. Kwon, 'Biomimetic Microfingerprints for Anti‐Counterfeiting Strategies', Advanced Materials,27, (2015), 2083-2089. [46] E.P. Chan, E.J. Smith, R.C. Hayward, A.J. Crosby, 'Surface wrinkles for smart adhesion', Advanced Materials,20, (2008), 711-716.
題,本研究計畫建構於仿生(biomimetic)的概念,建立一新穎性濕式製程的方式, 結合材料化學反應,來製備具高規則排列與大面積的表面皺褶(wrinkle)型態,以期應用於拉伸式光電元件與乾式吸附等應用。本研究開發一新穎濕式製程,透過選擇一水溶性高分子做為犧牲層,緊接著依序將硬質材料與軟性基材,如矽膠(PDMS)披覆於高分子犧牲層上,將整體材料至於水相中使高分子犧牲層緩慢溶解,於溶解過程中會形成一穩定且持續性的應力累積,使材料表面皺褶化(wrinkling),透過材料軟硬度與塗佈製程的控制,使自發產生的皺褶型態具有高規則排整而具有光子晶體的特性,此一濕式製程不需高真空設備,具低成本、便利性與大面積製備等特性,利於工業發展,於軟性電子元件與仿生電子皮膚具有極大的應用潛力。

Here, we develop a new 'wet approach' for the design of skin-like, large-area, and well-ordered polymer-based nanohybrids materials with photonic crystal property. Wrinkles or folds appear when skin is deformed due to muscle contraction or some outside mechanical deformation; they disappear after the deformation is removed. This latter phenomenon is a type of mechanical instability that develops in response to the applied stress (thermal, mechanical, or osmotic), showing unique, periodic surface patterns. By combination of polymer self-assembly and wrinkling, highly ordered lamellar polymer-based wrinkle morphology will be fabricated after releasing stress. Their wavelength and amplitude could be controlled by tuning their thickness and hardness degree. As a result, the wrinkle nanohybrids with flexible and stretchable characters should give the potential applications for sensing and mechanical devices such as mechanochromic sensors, surface enhanced Raman scattering, and gecko-like adhesives.
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-23起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066063-1.pdf6.55 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.