Please use this identifier to cite or link to this item:
標題: 鋰鋁層狀雙氫氧化物表面成長鎳顆粒做為觸媒管及其應用
Direct growth of Ni particle on Li-Al layered double hydroxide as catalyst tube and application
作者: 董育維
Yu-Wei Dong
關鍵字: 層狀雙氫氧化物;乙醇蒸氣重組;催化反應器;擔體;Layered Double Hydroxide (LDH);Ethanol steam reforming;catalytic converters
引用: [1] Kapdan, Ilgi Karapinar, and Fikret Kargi. 'Bio-hydrogen production from waste materials.' Enzyme and microbial technology 38.5 (2006): 569-582. [2] Balat, Mustafa. 'Potential importance of hydrogen as a future solution to environmental and transportation problems.' International journal of hydrogen energy 33.15 (2008): 4013-4029. [3] UK, 'H2 Mobility Synopsis of Phase 1 Results' (2013) [4] Taboada, Elena, Inma Angurell, and Jordi Llorca. 'Dynamic photocatalytic hydrogen production from ethanol–water mixtures in an optical fiber honeycomb reactor loaded with Au/TiO2.' Journal of catalysis 309 (2014): 460-467. [5] Ni, Meng, et al. 'A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production.' Renewable and Sustainable Energy Reviews 11.3 (2007): 401-425. [6] Alvarado, F. Díaz, and F. Gracia. 'Steam reforming of ethanol for hydrogen production: Thermodynamic analysis including different carbon deposits representation.' Chemical Engineering Journal 165.2 (2010): 649-657. [7] Barbir, Frano. 'PEM electrolysis for production of hydrogen from renewable energy sources.' Solar energy 78.5 (2005): 661-669. [8] Olateju, Babatunde. A Techno-Economic Assessment of Sustainable Large Scale Hydrogen Production from Renewable and Non-Renewable Sources. Diss. University of Alberta, 2016. [9] Rashid, Md, et al. 'Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis.' International Journal of Engineering and Advance Technology 4.3 (2015). [10] De Souza, Roberto F., et al. 'Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: towards the best device.' Journal of Power Sources164.2 (2007): 792-798. [11] Yu, Shih-Hao, Jun-Yen Uan, and Tsang-Lin Hsu. 'Effects of concentrations of NaCl and organic acid on generation of hydrogen from magnesium metal scrap.' international journal of hydrogen energy 37.4 (2012): 3033-3040. [12] Cho, Chi-Yuan, Kuo-Huang Wang, and Jun-Yen Uan. 'Evaluation of a new hydrogen generating system: Ni-rich magnesium alloy catalyzed by platinum wire in sodium chloride solution.' Materials transactions 46.12 (2005): 2704-2708. [13] Uan, Jun-Yen, Chi-Yuan Cho, and Kun-Ta Liu. 'Generation of hydrogen from magnesium alloy scraps catalyzed by platinum-coated titanium net in NaCl aqueous solution.' International Journal of Hydrogen Energy 32.13 (2007): 2337-2343. [14] Uan, Jun-Yen, et al. 'Producing hydrogen in an aqueous NaCl solution by the hydrolysis of metallic couples of low-grade magnesium scrap and noble metal net.' international journal of hydrogen energy 34.4 (2009): 1677-1687. [15] Li, Song-Lin, Hung-Mao Lin, and Jun-Yen Uan. 'Production of an Mg/Mg2Ni lamellar composite for generating H2 and the recycling of the post-H2 generation residue to nickel powder.' international journal of hydrogen energy 38.31 (2013): 13520-13528. [16] Comas, José, et al. 'Bio-ethanol steam reforming on Ni/Al2O3 catalyst. ' Chemical Engineering Journal 98.1-2 (2004): 61-68. [17] Chen, Wei-Hsin, Ting-Wei Chiu, and Chen-I. Hung. 'Enhancement effect of heat recovery on hydrogen production from catalytic partial oxidation of methane.' international journal of hydrogen energy 35.14 (2010): 7427-7440. [18] Luo, Jingshan, et al. 'Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts.' Science345.6204 (2014): 1593-1596. [19] Liu, Juan, et al. 'Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway.' Science347.6225 (2015): 970-974. [20] Zhang, Xiaohu, et al. 'Visible‐Light‐Induced Photocatalytic Hydrogen Production over Binuclear RuII–Bipyridyl Dye‐Sensitized TiO2 without Noble Metal Loading.' Chemistry-A European Journal 18.38 (2012): 12103-12111. [21] Comas, José, et al. 'Bio-ethanol steam reforming on Ni/Al2O3 catalyst.' Chemical Engineering Journal 98.1-2 (2004): 61-68. [22] Coronel, L., et al. 'Hydrogen production by ethanol steam reforming over Rh nanoparticles supported on lanthana/silica systems.' Applied Catalysis B: Environmental 160 (2014): 254-266. [23] Ramos, Ines A. Carbajal, et al. 'Hydrogen production from ethanol steam reforming on M/CeO2/YSZ (M= Ru, Pd, Ag) nanocomposites.' Catalysis today 180.1 (2012): 96-104. [24] Vargas, OA González, et al. 'Hydrogen production over Rh/Ce-MCM-41 catalysts via ethanol steam reforming.' international journal of hydrogen energy 38.32 (2013): 13914-13925. [25] Coronel, L., et al. 'Hydrogen production by ethanol steam reforming over Rh nanoparticles supported on lanthana/silica systems.' Applied Catalysis B: Environmental 160 (2014): 254-266. [26] Oensan, Zeynep Ilsen. 'Catalytic processes for clean hydrogen production from hydrocarbons.' Turkish Journal of Chemistry31.5 (2007): 531-550. [27] Hou, Tengfei, et al. 'Hydrogen production from ethanol reforming: catalysts and reaction mechanism.' Renewable and Sustainable Energy Reviews 44 (2015): 132-148. [28] Wang, Jia, et al. 'Structure and catalytic property of Li–Al metal oxides from layered double hydroxide precursors prepared via a facile solution route.' Industrial & Engineering Chemistry Research 50.12 (2011): 7120-7128. [29] Coleman, L. J. I., et al. 'Ni/Mg–Al mixed oxide catalyst for the steam reforming of ethanol.' Applied Catalysis A: General 363.1-2 (2009): 52-63. [30] 于峻台. 'Li-Al-CO3 層狀雙氫氧化物 (LDH) 經 500℃ 鍛燒之粉末做為乙醇脫氫觸媒之研究.' 中興大學材料科學與工程學系所學位論文 (2016): 1-38. [31] Meille, Valérie. 'Review on methods to deposit catalysts on structured surfaces.' Applied Catalysis A: General 315 (2006): 1-17. [32] Hwang, Sun-Mi, Oh Joong Kwon, and Jae Jeong Kim. 'Method of catalyst coating in micro-reactors for methanol steam reforming.' Applied Catalysis A: General 316.1 (2007): 83-89. [33] Radivojević, D., et al. 'Frozen slurry catalytic reactor: A new structured catalyst for transient studies in liquid phase.' Applied catalysis A: general 351.2 (2008): 159-165. [34] Li, Ruihua, et al. 'Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction.' Water research 96 (2016): 32-41. [35] Wollbrink, A., et al. 'Amorphous, turbostratic and crystalline carbon membranes with hydrogen selectivity.' Carbon 106 (2016): 93-105. [36] Wang, Jun, et al. 'Fabrication of ceramic microcomponents and microreactor for the steam reforming of ethanol.' Microsystem Technologies 14.9-11 (2008): 1245-1249. [37] Garcia-Garcia, F. J., et al. 'Microstructural engineering and use of efficient poison resistant Au-doped Ni-GDC ultrathin anodes in methane-fed solid oxide fuel cells.' International Journal of Hydrogen Energy 43.2 (2018): 885-893. [38] Zhao, Yanhui, et al. 'TiN films deposition inside stainless-steel tubes using magnetic field-enhanced arc ion plating.' Vacuum112 (2015): 46-54. [39] Syu, Jia-Han, et al. 'Optically transparent Li–Al–CO3 layered double hydroxide thin films on an AZ31 Mg alloy formed by electrochemical deposition and their corrosion resistance in a dilute chloride environment.' Corrosion Science 68 (2013): 238-248. [40] Mohammadi, Mahshid, Goran N. Jovanovic, and Kendra V. Sharp. 'Numerical study of flow uniformity and pressure characteristics within a microchannel array with triangular manifolds.' Computers & Chemical Engineering 52 (2013): 134-144. [41] Men, Y., et al. 'Ethanol steam reforming in a microchannel reactor.' Process safety and environmental protection 85.5 (2007): 413-418. [42] Huang, L-F., et al. 'Improved electrochemical phase diagrams from theory and experiment: the Ni–water system and its complex compounds.' The Journal of Physical Chemistry C121.18 (2017): 9782-9789. [43] Heracleous, E., et al. 'Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies.' Journal of Catalysis 231.1 (2005): 159-171. [44] Madhu, G., and V. Biju. 'Nanostructured amorphous nickel oxide with enhanced antioxidant activity.' Journal of Alloys and Compounds 637 (2015): 62-69. [45] El-Safty, Sherif A., et al. 'Multidirectional porous NiO nanoplatelet-like mosaics as catalysts for green chemical transformations.' Applied Catalysis B: Environmental 123 (2012): 162-173. [46] Park, Jea-Gun, et al. 'Multilevel nonvolatile small-molecule memory cell embedded with Ni nanocrystals surrounded by a NiO tunneling barrier.' Nano letters 9.4 (2009): 1713-1719. [47] Danilovic, N., et al. 'Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni (OH) 2/metal catalysts.' Angewandte Chemie 124.50 (2012): 12663-12666. [48] Hashemnejad, Seyed Meysam, and Matin Parvari. 'Deactivation and regeneration of nickel-based catalysts for steam-methane reforming.' Chinese Journal of catalysis 32.1-2 (2011): 273-279. [49] Wang, Xueqin, and Umit S. Ozkan. 'Characterization of active sites over reduced Ni−Mo/Al2O3 catalysts for hydrogenation of linear aldehydes.' The Journal of Physical Chemistry B 109.5 (2005): 1882-1890. [50] Subramani, Velu, and Chunshan Song. 'Advances in catalysis and processes for hydrogen production from ethanol reforming.' Catalysis 20.6 (2007).
蒸汽重組為目前工業上常用大量製氫方法,其效能受到觸媒以及催化反應器(catalytic converters)所影響。本研究於304不銹鋼表面合成Ni/NiO@LiAl LDH觸媒管做為乙醇蒸氣重組反應器。首先利用電沉積方法在304不銹鋼管表面成長Li-Al-CO3層狀雙氫氧化物(Layered Double Hydroxide, LDH)做為觸媒載體,之後浸入碳酸鎳水溶液攪拌至pH值7.4以上,即可在片狀表面成長鎳前驅物;進行氫氣還原處理後,LiAl LDH片狀表面均勻成長鎳及氧化鎳奈米顆粒層,其厚度及鎳含量隨攪拌時間增加;本研究LDH不需經過鍛燒前處理,且避免使用難處理的硝酸鎳溶液,即可直接成長高表面積觸媒管做為乙醇蒸氣重組反應器使用。在500℃下氫氣選擇率皆可達到84 %以上。藉由提高鎳觸媒層厚度及反應面積,能進一步提升氫氣轉化率以及觸媒壽命。不同攪拌時間之觸媒其氫氣轉化率由大至小分別為180_min R (11 %) > 30 _min R (7.5 %) > LiAl LDH (6.5 %)。180_min R具有最長觸媒壽命,在反應2.5小時後其氫氣轉化率逐漸下降。

Steam reforming is a large-scale hydrogen production method commonly used in the industry, and its efficiency is affected by the catalyst and the catalytic converters . In this study , Growing of high surface area catalyst on stainless steel tube as an ethanol steam reforming reactor . Frist, Li-Al-CO3 Layered Double Hydroxide (LDH) support is deposited on 304 stainless steel tube using electrodeposition method and nickel precursor is grown homogeneously over LiAl LDH surface by immersed and stirred in a nickel carbonate aqueous solution. After reduction, metal Ni and NiO nanoparticle layers is developed on LDH sheet surface, and the thickness and the nickel loading increases when stirring for longer . The process does not need to be repeat calcined, and avoids the use of nickel nitrate solution . The hydrogen selectivity can reach more than 84% at 500 °C. When the thickness of the nickel catalyst layer and the reaction area increase, the hydrogen conversion and lifetime increase. The hydrogen conversion of the catalyst tubes with different stirring times is 180_min R (11 %) > 30 _min R (7.5 %) > LiAl LDH (6.5 %). 180_min R has the longest catalytic lifetime, and its hydrogen conversion gradually decreases after 2.5 hours .
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066038-1.pdf3.49 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.