Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97868
標題: 電解沈積氧化鋯於AISI M3:2在磨耗腐蝕特性之研究
Electrolytic Deposition of ZrO2 on AISI M3:2 for The Characterization of Wear Corrosion
作者: 黃鴻麟
Hung-Lin Huang
關鍵字: 實驗計劃法;變異數分析法;環氧樹脂;磨耗腐蝕;DOE;ANOVA;EMC;wear corrosion test
引用: [1] Esmaiel Nouri, Mohammad Shahmiri, Hamid Reaz Rezaie and Fatemeh Talayian, A comparative study of heat treatment temperature influence on the thickness of zirconia sol-gel thin films by three different techniaues: SWE, SEM and AFM, Surface & Coatings Technology, 206 (2012) 3809-3815 [2] Xiaodong Wang, Guangming Wu, Bin Zhou, Jun Shen, Effect of crystal structure on optical properties of sol-gel derived zirconia thin films, Journal of Alloys and Compounds, 556 (2013) 182-187 [3] S.K. Tiwari, Manju Tripathi, Raghuvir Singh, Electrochemical behavior of zirconia based coatings on mild steel prepared by sol-gel method, Corrosion Science, 63 (2012) 334-341 [4] Fang Shao, Huayu Zhao, Chenguang Liu, Xinghua Zhong, Yin Zhuang, Jinxing Ni, Shunyan Tao, Dense yttria-stabilized zirconia coatings fabricated by plasma spray-physical vapor deposition, Ceramics International, 43 (2017) 2305-2313 [5] Jiao Yu, Guojun Ji, Quansheng Liu, Zianbin Zhang, Zhiming Shi, Effect of sol-gel ZrO2 films on corrosion behavior of the 304 stainless steel in coal-gases environment at high temperature, Surface & Coatings Technology, 331 (2017) 21-26 [6] A. Jemat, M.J. Ghazali, M. Razali, Y. Otsuka, A. Rajabi, Effects of TiO2 on microstructural, mechanical properties and in-vitro bioactivity of plasma sprayed yttria stabilized zirconia coatings for dental application, Ceramics International (2017), http:// doi.org/10.1016/j.ceramint.2017.12.008 [7] Chuan-Han Hsiao, Huan-Ping Teng, Fu-Hsing Lu, Formation of zirconia coatings on ZrN-coated substrates by plasma electrolytic oxidation, Surface & Coatings Technology, 269 (2015) 295-301 [8] Juan Pablo Carrasco-Amador, Antonio Diaz-Parralejo, Antonio Macias-Garcia, M. Angeles Diaz-Diez, Mara Olivares-Marin, Preparation and characterization of ZrO2/ Y2O3/ Al2O3-based microstructured multilayer sol-gel coatings, Ceramics International, 43 (2017) 14210-14217 [9] Fatemeh Davar, Nasrin Shayan, Preparation of zirconia-magnesia nanocomposite powders and coating by a sucrose mediated sol-gel method and investigation of its corrosion behavior, Ceramics International, 43 (2017) 3384-3392 [10] Sjoerd A. Veldhuis, Peter Brinks, Johan E. ten Elshof, Rapid densification of sol-gel derived yttria-stabilized zirconia thin films, Thin Solid Films, 589 (2015) 503-507 [11] Melissa J. Paterson, Besim Ben-Nissan, Mutilayer sol-gel zirconia coatings on 316 stainless steel, Surface and Coatings Technology, 86-87 (1996) 153-158 [12] I. John Berlin, K. Joy, Optical enhancement of Au doped ZrO2 thin films by sol-gel dip coating method, Physica B, 457 (2015) 182-187 [13] S.K. Tiwari, Jhuma Adhikary, T.B. Singh, Raghuvir Singh, Preparation and characterization of sol-gel derived yttria doped zirconia coatings on AISI 316L, Thin Solid Films, 517 (2009) 4502-4508 [14] P. Kiruthika, R. Subasri, A. Jyothirmayi, K. Sarvani, N.Y. Hebalkar, Effect of plasma surface treatment on mechanical and corrosion protection properties of UV-curable sol-gel based GPTS-ZrO2 coatings on mild steel, Surface & Coatings Technology, 204 (2010) 1270-1276 [15] P. Lenormand, A. Lecomte, D. Babonneau, A. Dauger, X-ray reflectivity, diffraction and grazing incidence small angle X-ray scattering as complementary methods in the microstructural study of sol–gel zirconia thin films, Thin Solid Films 495 (2006) 224 – 231 [16] Subodh Nath Patel , Vikram Jayaram, Dipankar Banerjee, Thick coatings of porous zirconia by anodization of zirconium in an organic electrolyte, Surface & Coatings Technology, 323 (2017) 2-9 [17] Bartosz Babiarczuk, Anna Szczurek, Anna Donesz-Sikorska, Iwona Rutkowska , Justyna Krzak, The influence of an acid catalyst on the morphology, wettabillity, adhesion and chemical structure properties of TiO2 and ZrO2 sol–gel thin films, Surface & Coatings Technology, 285 (2016) 134-145 [18] M. Gerstl, E. Navickas , M. Leitgeb , G. Friedbacher , F. Kubel , J. Fleig, The grain and grain boundary impedance of sol–gel prepared thin layers of yttria stabilized zirconia (YSZ), Solid State Ionics, 225 (2012) 732-736 [19] M. I. Maleto , L. I. Solovjeva , E. P. Turevskaya , K. A. Vorotilov and M. I. Yanovskaya, Alkoxy-derived Y2 03 -stabilized ZrO2 thin films, Thin Solid Films, 249 (1994) 1-5 [20] S.K. Yen, C.C. Chang, Cathodic reactions of electrolytic Al2O3 deposition on MAR-M247 superalloy, Materials Chemistry and Physics, 77 (2002) 836-840 [21] S.K. Yen, S.H. Chiou, S.J. Wu, C.C. Chang, S.P. Lin, C.M. Lin, Characterization of electrolytic HA/ZrO2 double layers coatings on Ti-6Al-4V implant alloy, Materials Science and Engineering, C 26 (2006) 65-77 [22] S.K. Yen, M.J. Guo, H.Z. Zan, Characterization of electrolytic ZrO2 coating on Co-Cr-Mo implant alloys of hip prosthesis, Biomaterials, 22 (2001) 125-133 [23] S.K. Yen, T.Y. Huang, Characterization of the electrolytic ZrO2 coating on Ti-6Al-4V, Materials Chemistry and Physics, 56 (1998) 214-221 [24] A. Mehner, H. Klu¨mper-Westkamp, F. Hoffmann, P. Mayr, Crystallization and residual stress formation of sol-gel-derived zirconia films, Thin Solid Films, 308-309 (1997) 363-368 [25] R. Di Maggio , L. Fedrizzi, S. Rossi, P. Scardi, Dry and wet corrosion behaviour of AISI 304 stainless steel coated by sol-gel ZrO2-CeO2 films, Thin Solid Films, 286 (1996) 127-135 [26] C.T. Hsu , C.C. Chang , T.N. Chang , S.K. Yen, Electrolytic Al2O3/Y2O3 double-layer coating on IN617 superalloy, Surface & Coatings Technology, 200 (2006) 6611–6617 [27] H.C. Hsu, S.K. Yen, Evaluation of metal ion release and corrosion resistance of ZrO2 thin coatings on the dental Co–Cr alloys, Dent Mater, 14 (1998) 339–346 [28] K. Stiller, S. Karagöz, H.-O. Andrén, H. Fischmeister, SECONDARY HARDENING IN HIGH SPEED STEELS, Journal de Physique Colloques, 48 (C6) (1987) pp.C6-405-C6-410 [29] Araujo Filho, Oscar O., Liberati, João F. , Monteiro, Waldemar Alfredo, Neves, Mauricio D. , Elias da Silva, Luis C. , Ambrozio Filho, Francisco, Transverse Rupture Strenght of M3:2 High Speed Steel Produced Through Conventional Casting and Powder Metallurgy Techniques, Materials Science Forum, Vols. 514-516 (2006) pp 584-588 [30] L. Lu , L.G. Houa, J.X. Zhang, H.B.Wang, H. Cui, J.F. Huang, Y.A. Zhang, J.S. Zhang, Improved the microstructures and properties of M3:2 high-speed steel by spray forming and niobium alloying, Materials Characterization, 117 (2016) 1–8 [31] Hebin Wang , Longgang Hou, Jinxiang Zhang, Lin Lu, Hua Cui, Jishan Zhang, The secondary precipitates of niobium-alloyed M3:2 high speed steel prepared by spray deposition, Materials Characterization, 106 (2015) 245–254 [32] C. Rodenburg, M. Krzyzanowski, J.H. Beynon, W.M. Rainforth, Hot workability of spray-formed AISI M3:2 high-speed steel, Materials Science and Engineering, A 386 (2004) 420–427 [33] Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics, Designation: C 1327 – 03  [34] B. JÖNSSON及S. HOGMARK, HARDNESS MEASUREMENT OF THIN FILM, Thin Solid Films, 114 (1984) 257-269 [35] 張正君,電解沈積氧化鋁陶瓷於MAR-M247超合金之研究,國立中興大學材料工程學研究所碩士論文,1998 [36] 許碩文,電解沈積氧化鋁於鈷鉻鉬合金上之研究,國立中興大學材料工程學研究所碩士論文,1999 [37] 洪逸屏,電解沈積氧化鋯陶瓷膜於黃銅合金之研究,國立中興大學材料與工程學系研究所碩士論文,2008
摘要: 
目前IC封裝產業使用模具持續面臨鍍鉻層剝落及刮傷問題,對此領域來說,如何獲得較硬、較耐腐蝕且較耐磨耗的表面處理是有很深切的期待。研究中先行確認目前IC封裝模具廣泛使用的基材在0.5M H2SO4腐蝕環境下未作表面處理時的抗腐蝕能力,然後分別在相同腐蝕環境下測試目前廣泛使用的電鍍鉻及電解沈積氧化鋯的抗腐蝕能力,從測試結果顯示在較嚴苛的腐蝕環境下,鍍鉻表面處理雖可以提供一定的抗腐蝕能力,但從腐蝕電位及腐蝕電流的比較來看,氧化鋯薄膜可以提供更佳的抗腐蝕保護。
實驗中以二因子三水準的實驗計劃法(DOE,Design of Experiment),因子分別為電解沈積電位及沈積時間,再輔助以變異數分析(ANOVA,Analysis of Variation),藉由ANOVA表分析出沈積時間是影響薄膜厚度的唯一顯著因子;再根據前人的研究,要獲得真正薄膜硬度則薄膜厚度是必要確認的數據,再計算基材與複合區硬度差與變形區的幾何關係,以獲得薄膜真正硬度。研究結果計算出傳統電鍍鉻的薄膜硬度約在Hv 887左右,而使用較佳電解沈積條件所得氧化鋯薄膜硬度可達Hv 1314~Hv 1446,顯示氧化鋯薄膜較電鍍鉻具有更高的硬度。
藉由以實際環氧樹脂封裝材料(EMC,Epoxy Molding Compound)所製成的研磨棒,分別對氧化鋯及鍍鍍表面試片在醋酸水溶液中作磨耗腐蝕實驗,在雷射掃瞄顯微鏡的檢視下,發現鍍鉻試片的鍍鉻層幾乎被磨耗殆盡,所以在open circuit及electrostatic voltage的測項,皆發現鍍鉻試片皆無法回到原來水準,但氧化鋯試片可以在磨耗實驗結束時維持與磨耗前約相同水準;針對磨耗與非磨耗區的SEM及EDS分析也證實了上述觀測到的現象,SEM觀察到許多鍍鉻層剥落的現象,而EDS的元素分析確認鍍鉻剥離及未剥離區的差異,以及EDS mapping顯示基材元素外的情形也確認鍍鉻層剥離的結果。

The IC assembly industry faces the peeling and scratch issues of Cr coating on mold tool surface treatment. In this field, how to get harder, more anti-corrosion and anti-wearing surface treatment technology is an urgent requirement. AISI M3:2, the most popular material for IC mold die was immerged in the anti-corrosion performance aerated 0.5M H2SO4 aqueous solution for the dynamic polarization test to investigate. Both Chromium coated and ZrO2 coated specimens, by electrochemical methods, were also tested for comparison. The result indicates that the Cr coated specimen can provide the better protection than the uncoated one, and the ZrO2 is the best one, according to their corrosion potential and corrosion corrosion current density.
2 factors – 3 levels DOE (Design of Experiment) and ANOVA (Analysis of Variation) were applied to set experiment matrix and analysis result. 2 factors are the electro deposition potential and the deposition time respectively. The result shows that the deposition time is the only one major factor to influence deposition film thickness. Based on the previous study, the actual film hardness is related to the film thickness, metal hardness, and the composite hardness and the impression dialogue length. In this study, if the Cr plating hardness is around Hv 887, and that if ZrO2 film can reach Hv 1314~Hv 1446, much harder than Cr plating.
In wear corrosion tests, EMC (Epoxy Molding Compound) rods were used as wear pins and Cr plated and ZrO2 coated specimens were used as wear disks, respectively. All wear corrosion tests were carried out in pH 4.75 CH3COOH solution. The laser scanning microscope inspection results indicate that the Cr plating layer is almost vanished compared with non-wear test portion, and the Cr plated specimens can not return to original levels such as open circuit voltage and passivation current density. However, the ZrO2 coated specimen shows little deviation during the same tests. SEM and EDS inspections reveal the consistent result that the Cr plating has been peeled off while the ZrO2 coating is still on the surface. It is concluded that the latter is better than the former in wear corrosion resistance.
URI: http://hdl.handle.net/11455/97868
Rights: 同意授權瀏覽/列印電子全文服務,2019-08-28起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-5104066030-1.pdf5.87 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.