Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97869
標題: 電解沉積氫氧基磷灰石/氧化鋯複合鍍層於AZ31鎂合金基材提高其抗蝕性應用於生醫
Electrolytic deposition of hydroxyapatite/zirconia composite coatings on AZ31 magnesium alloy to enhance corrosion resistance for biomedical applications
作者: 林延潤
Yen-Jun Lin
關鍵字: 生醫材料;氧化鋯;氫氧基磷灰石;鎂合金;biomedical material;zirconia;hydroxyapatite;Magnesium alloy
引用: 1. H. Hermawan, 'Biodegradable Metals : From Concept to Applications', Springer, Heidelberg, Germany, 2012. 2. 鈴木弘茂,'精密陶瓷的最新技術',工業技術研究院出版, P.159-171 (1984). 3. Bulter, C. A., Jones, L. C. 1998. Initial stability of porous coated total hip femoral components: a mechanical study of micromovement. Journal of Orthopaedic Research 13, P.549-560. 4. L. L. Hench, 'Bioceramics : From Concept to Clinic', J. Am. Ceram. Soc., 74﹝7﹞P.1487-1510 (1991). 5. Kim, Hae-Won., 'Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method', Biomaterials, 25, P.2533-2538 (2004). 6. Kim, Hae-Won., 'Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer', Biomaterials, 24, P.3277-3284 (2003). 7. Lepnor, I.B., 'In vitro bioactivity of starch thermoplastic/ hydroxyapatite composite biomaterials: an in situ using atomic force microscopy', Biomaterials, 24, P.579-585 (2003). 8. M. J. Wang, C. F. Li., S. K. Yen, Electrolytic MgO/ZrO2 duplex-layer coating on AZ91D magnesium alloy for corrosion resistance, Corrosion Science 76 (2013) 142-153. 9. M. J. Wang, S. C. Chao, S. K. Yen, Electrolytic calcium phosphate/zirconia composite coating on AZ91D magnesium alloy for enhancing corrosion resistance and bioactivity, Corrosion Science 104 (2016) 47-60. 10. 宋信文and陳松青, '生醫材料簡介', 生物產業技術概論, P.33-58 (2003). 11. Chien-Jung Su, 'Evaluation of Biocompatibility on Various Surface-Processed Titanium Screws : Animal Model'. A Thesis Submitted to the institute of Biomedical Engineering National Cheng Kung University, P.3(2002). 12. J. B. Park, 'Biomaterials Science and Engineering', Plenum Press, New York and London (1985). 13. G. K. Mckee, 'Total hip replacement past present and future ', Biomaterial. 13, July 1982. 14. Joseph D. Bronzino, 'The biomedical engineering handbook ', Boca Raton, FL, CRC Press (2000). 15. James F. Shackelford., 'Bioceramics', Amsterdam, Gordon and Breach Science (1999). 16. A. Ravaglioli, and A. Krajewski., 'Bioceramics and the human body', London, Elsevier Applied Science (1992). 17. A. Ravaglioli, and A. Krajewski ; with a foreword by Samuel F. Hulbert., 'Bioceramics, materials properties applications', London Chapman & Hall (1992). 18. Takao Yamamuro, Larry L. Hench, June Wilson. 'CRC handbook of bioactive ceramics', Boca Raton, Fla., CRC Press (1990). 19. L. L. Hench, 'Bioactive Ceramics', in Ducheyne, Lemons, P. ; Lemons, J. Eds. Bioceramics: Material Characteristics Versus In Vivo Behavior. New York Academy of Sciences (1990). 20. L. L. Hench, ' Bioceramics and the Origins of Life', in Oonishi, H. Ed Bioceramics: Proceedings of the First International Bioceramic Symposium. Ishyaku EuroAmerica. P.5-11 (1990). 21. Howden, A. 'Tissue reaction to the Bioceramic Synthos', in Hastings, G. Ed.. Mechanical Properties of Biomaterials. John Wiely and Sons. P.445-456 (1980). 22. L. L. Hench and E. C. Ethridge, 'Biomaterials: An Interfacial Approach', Academic Press, New York (1982). 23. J. D. Preston, 'Properties in Dental Ceramics', in Proceedings of the IV Int. Symp. On Dental Materials, Quintessa Pub. Co.,Chicago (1988). 24. W. Cao and L. L. Hench, 'Bioactive Materials', Ceram. Int., 22, P.493-507 (1996). 25. L. L. Hench, R. J. Splinter, W. C. Allen, and T. K. Greenlee, 'Bonding Mechanism at the Interface of Ceramic Prosthetic Materials', J. Biomed. Mater. Res., 2, P.117-141 (1972). 26. Soltesz., Ceramics in Composites, Bioceramics: Material Characteristics Versus in Vivo Behavior, Ed. P. Ducheyne and J. Lemons, New York Academy of Sciences, P.137-155 (1988). 27. 林奇民,'The Study of Electrolytic Deposition of Al2O3-HA Bioceramic on Pure Titanium',國立中興大學 材料工程學研究所碩士論文 (2000). 28. Lorry L. Hench and June Wilson, 'An Introduction to Biomaterials', P.139~198. 29. F. C. M. Driessens, 'Formation and Stability of Calcium Phosphate inrealtion to the phase composition of the mineral in calcified tissues', in 'Bioceramics of calcium phosphate, P.1-6 (1983). 30. Segey V. Dorozhkin & Matthisa Epple, 'Biological and medical significance of calcium phosphates.', Angew. Chem. Int. Ed., 41, P.3130-3146 (2002). 31. L. Montastuc., 'A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor', Chemical Engineering Journal, 94 P.41-50 (2003). 32. Hae-Won Kim, Young-Hag Koh, 'Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method.', Biomaterials, 25, P.2533-2538 (2004). 33. Lu, Yu-Peng; Li, Mu-Sen, Plasma-sprayed, hydroxyapatite+ titania composite bond coat for hydroxyapatite coating on titanium substrate, Biomaterials, 25, P.4393-4403 (2004). 34. 賴志育, 'The study of Electrolytic Alumina Toughened Zirconias and ZirconiaToughened Alumina Ceramic Coatings on Co-Cr-Mo Alloy', 國立中興大學 材料工程學研究所碩士論文. 35. Wenjea Tseng, 'Microstructural Development on an ZrO2(Y2O3) Surface', Journal of Materials Science Letters, 17, P.285-288 (1997). 36. Aldo, R. Boccaccini and Igor Zhitomirsky, 'Application of electrophoretic and electrolytic deposition techniques in ceramics processing', Current Opinion in Solid State and Materials Science, 6, P.251-260 (2002). 37. I. Zhitomirsky, 'Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects', Advances in Colloid and Interface Science, 97, P.277-315 (2002). 38. I. Zhitomirsky and A. Petric, 'Cathodic electrodeposition of polymer films and organoceramic films', Materials Science and Engineering B, 78, P.125-130 (2000). 39. Kokubo, Tadashi., 'Apatite formation on surfaces of ceramics , metals and polymers in body environment', 46, P.2519-2527 (1998). 40. Rohan, P.; Neufuss, K., 'Thermal and mechanical properties of cordierite, mullite and steatite produced by plasma spraying', Ceramics International, 30, P.597-603 (2004). 41. Inagaki, M.; Yokogawa, Y.; Kameyama, T., 'Bone strength improvement of hydroxyapatite/titanium composite coating by partial nitriding during RF-thermal plasma spraying', Surface and Coatings Technology, 173, P.1-8 (2003). 42. Cao, Z.; Lee, B.I., 'Thermal behavior of sol-gel derived phosphate ceramics', Journal of Physics and Chemistry of Solids, 61, P.1677-1685 (2000). 43. 胡啟章, '電化學原理及方法', 五南圖書出版有限公司, P.6-10 (2002). 44. R. Winand, 'Electrocrystallization : Fundamental Considerations and Application to High Current Density Continuous Steel Sheet Plating', Journal of Applied Electrochemistry, 21, P.377-385 (1991). 45. Allen J. Bard, Larry R. Faulkner., 'Electrochemical methods, fundamentals and applications', NewYork, Wiley (2001). 46. Olof Forsen., 'Electrochemical methods in corrosion research', Switzerland, Trans Tech (1992). 47. 田福助, '電化學理論與應用', 新科技書局出版 (2014). 48. 鮮祺振, '腐蝕控制', 徐氏基金會出版 (1998). 49. S. K. Yen, 'Characterization electrolytic ZrO2 coating on AISI 316L stainless steel', J. Electrochem. Soc., 146, P.1392-1397 (1999). 50. 格里弟博士編著, '電極動力學', 徐氏基金會出版, P.35 (1996). 51. 金屬表面處理藥劑資訊網. 52. 林素萍, '電解沉積ZrO2/HA生醫陶瓷薄膜於Ti-6Al-4V合金上之研究', 國立中興大學 材料工程學研究所碩士論文 (2001). 53. 王煒豪, '電解沉積ZrO2/HA複合塗層於純鐵之研究應用於生醫', 國立中興大學 材料工程學研究所碩士論文 (2017). 54. S. K. Yen and C. M. Lin,'Cathoodic reactions of electrolytic hydroxyapatite coatings on pure titanium', Materials Chemical and Physics, 77, P.70-76 (2002). 55. 陳瑞隆, '電化學沉積HA/TiO2生醫陶瓷鍍膜於Ti-6Al-4V合金製程最佳化之研究', 國立中興大學 材料工程學研究所碩士論文 (2004). 56. 高楨媛, '電解沉積氫氧基磷灰石/氧化鋯複合鍍層於純鎂基材提高其抗蝕性與紫杉醇之載藥量應用於生醫', 國立中興大學 材料工程學研究所碩士論文 (2017). 57. A. G102-89, standard practice for calculation of corrosion rates and related information from electrochemical measurements, ASTM, Philadelphia, PA, (2010).
摘要: 
鎂合金材料在現今全球醫療市場上已受到重視且被廣泛的運用,雖然鎂合金不具良好抗腐蝕性,但卻是生物可降解金屬中之生醫材料。本研究主要目的是在改善AZ31鎂合金的抗蝕性,利用電解沉積HAp/ZrO2複合鍍層在合金上,控制不同的沉積參數,找出最佳的製程。在實驗中,使用鎂合金AZ31試片置入於氫氧化鈉(NaOH)溶液中進行鈍化,完成後再置入硝酸氧鋯ZrO(NO3)2溶液中進行電化學沉積氧化鋯(ZrO2),最後再置入Ca(NO3)2·4H2O及NH4H2PO4的混合溶液中沉積氫氧磷灰石(HAp),形成HAp/ZrO2之複合鍍層,透過燒結方式使複合鍍層能與試片形成更穩定的鍵結,製備後的試片藉由掃描式電子顯微鏡(SEM)、X光繞射分析(XRD)以及動態極化實驗等測試,分析與探討鍍層結構及抗蝕性等特性。由研究結果顯示,HAp/ZrO2複合鍍層較單層HAp和未具有鍍層之試片在3.5wt% NaCl中的抗蝕性較佳,腐蝕電流密度Icorr從136.51下降至20.162 μA/cm2,故經由提高抗腐蝕能力而使它有機會成為良好可降解的生醫材料。

Magnesium alloy materials have been approved and widely used in the global medical market nowadays. Although magnesium alloy has poor corrosion resistance, it is the
biodegradable metal in biomedical applications. The main objective of this study was to improve the corrosion resistance of AZ31 magnesium alloy. Using electrolytic deposition HAp/ZrO2 composite coating on this alloy, the optimum process was searched by tuning different deposition parameters. In the experiment, the magnesium alloy AZ31 specimen was immersed in the solution of sodium hydroxide (NaOH) for forming the passivation film. Consequently, the electrochemical deposition of zirconia (ZrO2) is carried out in ZrO(NO3)2 aqueous solution, finally forming the composite coating of HAp/ZrO2 in a mixed solution of Ca(NO3)2·4H2O and NH4H2PO4 also by the electrochemical method. Through sintering, the composite coating can form a more stable bond with the alloy specimen. The prepared specimens were characterized by scanning electronmicroscope (SEM), X-ray diffraction (XRD) and dynamic polarization tests to analyze and discuss the coating structure and corrosion resistance. The results show that the corrosion resistance of HAp/ZrO2 composite coated specimen in better than that of single-layer HAp coated one by the immersion method or the and uncoated one in 3.5wt% NaCl, leading to the current density of Icorr decreased from 136.51 to 20.162 μA/cm2. It is concluded that magnesium alloy AZ31 could be a biodegradable material used in impants after the improved corrosion resistance.
URI: http://hdl.handle.net/11455/97869
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-29起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-5098066022-1.pdf6.32 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.