Please use this identifier to cite or link to this item:
標題: 馬來酸接枝聚丁烯己二酸對苯二甲酸酯/層狀苯基磷酸鋅奈米複合材料之製備與特性分析
Preparation and Characterization of Maleic Acid- Grafted Poly(butylene adipate-co-terephthalate)/ Layered Zinc Phenylphosphonate Nanocomposites
作者: 王湘婷
Hsiang-Ting Wang
關鍵字: 聚丁烯己二酸對苯二甲酸酯;層狀苯基磷酸鋅;奈米複合材料;結晶行為;生物降解特性;Poly(butylene adipate -co-terephthalate);Layered zinc phenylphosphonate;Nanocomposites;Crystalline behaviors;Microstructure;Biodegradable
引用: [1] Y.-H. Na, Y. He, N. Asakawa, N. Yoshie, and Y. Inoue, 'Miscibility and Phase Structure of Blends of Poly(ethylene oxide) with Poly(3-hydroxybutyrate), Poly(3-hydroxypropionate), and Their Copolymers,' Macromolecules, vol. 35, no. 3, pp. 727-735, 2002. [2] N. Wu and H. Wang, 'Effect of zinc phenylphosphonate on the crystallization behavior of poly(l-lactide),' Journal of Applied Polymer Science, vol. 130, no. 4, pp. 2744-2752, 2013. [3] 戈進杰, '生物高分子材料及其應用,' 2002, pp. 1-10. [4] 日本生物可分解塑膠研究會, 圖解生物可分解塑膠. [5] R. A. Gross and B. Kalra, 'Biodegradable Polymers for the Environment,' Science, 10.1126/science.297.5582.803 vol. 297, no. 5582, p. 803, 2002. [6] G.-Q. Chen and M. K. Patel, 'Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review,' Chemical Reviews, vol. 112, no. 4, pp. 2082-2099, 2012. [7] P. J. Hocking, R. H. Marchessault, M. R. Timmins, R. W. Lenz, and R. C. Fuller, 'Enzymatic Degradation of Single Crystals of Bacterial and Synthetic Poly(β-hydroxybutyrate),' Macromolecules, vol. 29, no. 7, pp. 2472-2478, 1996. [8] T. Kijchavengkul, R. Auras, M. Rubino, S. Selke, M. Ngouajio, and R. T. Fernandez, 'Biodegradation and hydrolysis rate of aliphatic aromatic polyester,' Polymer Degradation and Stability, vol. 95, no. 12, pp. 2641-2647, 2010. [9] S. Mohanty and S. K. Nayak, 'Aromatic-aliphatic poly(butylene adipate-co-terephthalate) bionanocomposite: Influence of organic modification on structure and properties,' Polymer Composites, vol. 31, no. 7, pp. 1194-1204, 2010. [10] Z. Saadi, G. Cesar, H. Bewa, and L. Benguigui, 'Fungal degradation of poly (butylene adipate-co-terephthalate) in soil and in compost,' Journal of Polymers and the Environment, vol. 21, no. 4, pp. 893-901, 2013. [11] Z. Jun, L. Zhi, Z. Jing, and L. Shiyun, 'Synthesis and characterization of the biodegradable poly (butylene adipate-co-butylene terephthalate) copolyesters,' Journal of Jiangsu University of Science and Technology (Natural Science Edition), vol. 3, p. 016, 2013. [12] C. Zhao, X. Bai, G. Zou, Y. He, and J. Li, Effect of monomer ratio of AA to PTA on properties of PBAT copolyesters. 2017, pp. 452-459. [13] Z. Gan, H. Abe, and Y. Doi, 'Temperature-Induced Polymorphic Crystals of Poly(butylene adipate),' Macromolecular Chemistry and Physics, vol. 203, no. 16, pp. 2369-2374, 2002. [14] Z. Gan, K. Kuwabara, M. Yamamoto, H. Abe, and Y. Doi, 'Solid-state structures and thermal properties of aliphatic–aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters,' Polymer Degradation and Stability, vol. 83, no. 2, pp. 289-300, 2004. [15] P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, 'Polymer-layered silicate nanocomposites: an overview,' Applied Clay Science, vol. 15, no. 1, pp. 11-29, 1999. [16] S. Sinha Ray and M. Okamoto, 'Polymer/layered silicate nanocomposites: a review from preparation to processing,' Progress in Polymer Science, vol. 28, no. 11, pp. 1539-1641, 2003. [17] J. Liu, W. J. Boo, A. Clearfield, and H. J. Sue, 'Intercalation and Exfoliation: A Review on Morphology of Polymer Nanocomposites Reinforced by Inorganic Layer Structures,' Materials and Manufacturing Processes, vol. 21, no. 2, pp. 143-151, 2006. [18] D. M. Poojary and A. Clearfield, 'Coordinative intercalation of alkylamines into layered zinc phenylphosphonate. Crystal structures from X-ray powder diffraction data,' Journal of the American Chemical Society, vol. 117, no. 45, pp. 11278-11284, 1995. [19] G. Cao, H. Lee, V. M. Lynch, and T. E. Mallouk, 'Synthesis and structural characterization of a homologous series of divalent-metal phosphonates, MII (O3PR). cntdot. H2O and MII (HO3PR) 2,' Inorganic Chemistry, vol. 27, no. 16, pp. 2781-2785, 1988. [20] P. Pan, Z. Liang, A. Cao, and Y. Inoue, 'Layered Metal Phosphonate Reinforced Poly(l-lactide) Composites with a Highly Enhanced Crystallization Rate,' ACS Applied Materials & Interfaces, vol. 1, no. 2, pp. 402-411, 2009. [21] S. Wang, C. Han, J. Bian, L. Han, X. Wang, and L. Dong, 'Morphology, crystallization and enzymatic hydrolysis of poly(L-lactide) nucleated using layered metal phosphonates,' Polymer International, vol. 60, no. 2, pp. 284-295, 2011. [22] Y. Zhang, K. J. Scott, and A. Clearfield, 'Intercalation of alkylamines into dehydrated and hydrated zinc phenyiphosphonates,' Journal of Materials Chemistry, 10.1039/JM9950500315 vol. 5, no. 2, pp. 315-318, 1995. [23] R. Herrera, L. Franco, A. Rodríguez-Galán, and J. Puiggalí, 'Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s,' Journal of Polymer Science Part A: Polymer Chemistry, vol. 40, no. 23, pp. 4141-4157, 2002. [24] Z. Saadi, G. Cesar, H. Bewa, and L. Benguigui, 'Fungal Degradation of Poly(Butylene Adipate-Co-Terephthalate) in Soil and in Compost,' Journal of Polymers and the Environment, journal article vol. 21, no. 4, pp. 893-901, 2013. [25] F. Chen and J. Zhang, 'Effects of Plasticization and Shear Stress on Phase Structure Development and Properties of Soy Protein Blends,' ACS Applied Materials & Interfaces, vol. 2, no. 11, pp. 3324-3332, 2010. [26] S. K. Nayak, 'Biodegradable PBAT/Starch Nanocomposites,' Polymer-Plastics Technology and Engineering, vol. 49, no. 14, pp. 1406-1418, 2010. [27] H. Moustafa, C. Guizani, C. Dupont, V. Martin, M. Jeguirim, and A. Dufresne, 'Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications,' ACS Sustainable Chemistry & Engineering, vol. 5, no. 2, pp. 1906-1916, 2017. [28] J. Xie et al., 'Scale-Up Fabrication of Biodegradable Poly(butylene adipate-co-terephthalate)/Organophilic–Clay Nanocomposite Films for Potential Packaging Applications,' ACS Omega, vol. 3, no. 1, pp. 1187-1196, 2018. [29] S. Mohanty and S. K. Nayak, 'Biodegradable Nanocomposites of Poly(butylene adipate-co-terephthalate) (PBAT) and Organically Modified Layered Silicates,' Journal of Polymers and the Environment, journal article vol. 20, no. 1, pp. 195-207, 2012. [30] Y. Nabar, J. M. Raquez, P. Dubois, and R. Narayan, 'Production of Starch Foams by Twin-Screw Extrusion:  Effect of Maleated Poly(butylene adipate-co-terephthalate) as a Compatibilizer,' Biomacromolecules, vol. 6, no. 2, pp. 807-817, 2005. [31] C.-S. Wu, 'Process, Characterization and Biodegradability of Aliphatic Aromatic Polyester/Sisal Fiber Composites,' Journal of Polymers and the Environment, journal article vol. 19, no. 3, pp. 706-713, 2011. [32] C.-S. Wu, 'Aliphatic–aromatic polyester–polyaniline composites: preparation, characterization, antibacterial activity and conducting properties,' Polymer International, vol. 61, no. 10, pp. 1556-1563, 2012. [33] F. Yu, P. Pan, N. Nakamura, and Y. Inoue, 'Nucleation Effect of Layered Metal Phosphonate on Crystallization of Bacterial Poly[(3-hydroxybutyrate)-co-(3-hydroxyhexanoate)],' Macromolecular Materials and Engineering, vol. 296, no. 2, pp. 103-112, 2011. [34] Y. Chen et al., 'Modulated crystallization behavior, polymorphic crystalline structure and enzymatic degradation of poly(butylene adipate): Effects of layered metal phosphonate,' European Polymer Journal, vol. 72, pp. 222-237, 2015. [35] Y.-A. Chen, E.-C. Chen, and T.-M. Wu, 'Organically modified layered zinc phenylphosphonate reinforced stereocomplex-type poly(lactic acid) nanocomposites with highly enhanced mechanical properties and degradability,' Journal of Materials Science, vol. 50, no. 23, pp. 7770-7778, 2015. [36] Y.-A. Chen, D.-L. Kuo, E.-C. Chen, and T.-M. Wu, Enhanced enzymatic degradation in nanocomposites of various organically-modified layered zinc phenylphosphonates and poly (butylene succinate-co-adipate). 2017. [37] E. Kitakuni et al., 'Biodegradation of poly(tetramethylene succinate-cotetramethylene abdicate) and poly(tetramethylene succinate) through water-soluble products,' Environmental Toxicology and Chemistry, vol. 20, no. 5, pp. 941-946, 2001. [38] C.-Y. Ciou, S.-Y. Li, and T.-M. Wu, 'Morphology and degradation behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/layered double hydroxides composites,' European Polymer Journal, vol. 59, pp. 136-143, 2014. [39] M. C. Serrano et al., 'In vitro biocompatibility assessment of poly(ε-caprolactone) films using L929 mouse fibroblasts,' Biomaterials, vol. 25, no. 25, pp. 5603-5611, 2004. [40] Y. S. Nam and T. G. Park, 'Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation,' Journal of Biomedical Materials Research, vol. 47, no. 1, pp. 8-17, 1999. [41] Y. S. Nam, J. J. Yoon, and T. G. Park, 'A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive,' Journal of Biomedical Materials Research, vol. 53, no. 1, pp. 1-7, 2000. [42] Q. Lv and Q. Feng, 'Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique,' Journal of Materials Science: Materials in Medicine, journal article vol. 17, no. 12, pp. 1349-1356, 2006. [43] C. M. Hassan and N. A. Peppas, 'Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods,' in Biopolymers • PVA Hydrogels, Anionic Polymerisation NanocompositesBerlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 37-65. [44] C. J. Doillon, C. F. Whyne, S. Brandwein, and F. H. Silver, 'Collagen-based wound dressings: Control of the pore structure and morphology,' Journal of Biomedical Materials Research, vol. 20, no. 8, pp. 1219-1228, 1986. [45] M. Lebourg, J. S. Antón, and J. L. G. Ribelles, 'Porous membranes of PLLA–PCL blend for tissue engineering applications,' European Polymer Journal, vol. 44, no. 7, pp. 2207-2218, 2008. [46] J.-W. Kim, K. Taki, S. Nagamine, and M. Ohshima, 'Preparation of poly(L-lactic acid) honeycomb monolith structure by unidirectional freezing and freeze-drying,' Chemical Engineering Science, vol. 63, no. 15, pp. 3858-3863, 2008. [47] J. P. Zheng, C. Z. Wang, X. X. Wang, H. Y. Wang, H. Zhuang, and K. De Yao, 'Preparation of biomimetic three-dimensional gelatin/montmorillonite–chitosan scaffold for tissue engineering,' Reactive and Functional Polymers, vol. 67, no. 9, pp. 780-788, 2007. [48] 何曼君,張紅東,陳維孝, 高分子物理, vol. 董西俠復旦大學出版社, no. 2008年2月第三版第三次印. [49] Z. Bartczak and A. Galeski, 'Homogeneous nucleation in polypropylene and its blends by small-angle light scattering,' Polymer, vol. 31, no. 11, pp. 2027-2038, 1990. [50] A. S. Dum, 'Structural investigation of polymers G. Bodor Ellis Horwood, Chichester, 1991. pp. xxvi + 454, price £45. ISBN 0-13-852989-2,' Polymer International, vol. 30, no. 4, pp. 551-551, 1993. [51] Y. Long, R. A. Shanks, and Z. H. Stachurski, 'Kinetics of polymer crystallisation,' Progress in Polymer Science, vol. 20, no. 4, pp. 651-701, 1995. [52] M. Avrami, 'Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei,' The Journal of Chemical Physics, vol. 8, no. 2, pp. 212-224, 1940. [53] W. D. Lee, E. S. Yoo, and S. S. Im, 'Crystallization behavior and morphology of poly(ethylene 2,6-naphthalate),' Polymer, vol. 44, no. 21, pp. 6617-6625, 2003. [54] J. D. Hoffman and J. J. Weeks, 'Rate of Spherulitic Crystallization with Chain Folds in Polychlorotrifluoroethylene,' The Journal of Chemical Physics, vol. 37, no. 8, pp. 1723-1741, 1962. [55] K. J. Frink, R. C. Wang, J. L. Colon, and A. Clearfield, 'Intercalation of ammonia into zinc and cobalt phenylphosphonates,' Inorganic Chemistry, vol. 30, no. 7, pp. 1438-1441, 1991. [56] C. Cai, Q. Shi, L. Li, L. Yin, G. Tang, and J. Yin, 'Preparation, structure and properties of PP-g-AA grafting copolymer,' Frontiers of Chemistry in China, journal article vol. 3, no. 2, pp. 133-137, 2008. [57] R. G. Alamo and L. Mandelkern, 'Crystallization kinetics of random ethylene copolymers,' Macromolecules, vol. 24, no. 24, pp. 6480-6493, 1991. [58] K. Numata, A. Finne-Wistrand, A.-C. Albertsson, Y. Doi, and H. Abe, 'Enzymatic Degradation of Monolayer for Poly(lactide) Revealed by Real-Time Atomic Force Microscopy: Effects of Stereochemical Structure, Molecular Weight, and Molecular Branches on Hydrolysis Rates,' Biomacromolecules, vol. 9, no. 8, pp. 2180-2185, 2008. [59] A. C. Fernandes, J. W. Barlow, and D. R. Paul, 'Aliphatic polyester miscibility with polyepichlorohydrin,' Journal of Applied Polymer Science, vol. 29, no. 6, pp. 1971-1983, 1984. [60] L. Ye and Q. Wu, 'Effects of an intercalating agent on the morphology and thermal and flame-retardant properties of low-density polyethylene/layered double hydroxide nanocomposites prepared by melt intercalation,' Journal of Applied Polymer Science, vol. 123, no. 1, pp. 316-323, 2012. [61] F. Signori, A. Boggioni, M. C. Righetti, C. E. Rondán, S. Bronco, and F. Ciardelli, 'Evidences of Transesterification, Chain Branching and Cross-Linking in a Biopolyester Commercial Blend upon Reaction with Dicumyl Peroxide in the Melt,' Macromolecular Materials and Engineering, vol. 300, no. 2, pp. 153-160, 2015. [62] F. Li, X. Xu, Q. Hao, Q. Li, J. Yu, and A. Cao, 'Effects of comonomer sequential structure on thermal and crystallization behaviors of biodegradable poly(butylene succinate-co-butylene terephthalate)s,' Journal of Polymer Science Part B: Polymer Physics, vol. 44, no. 12, pp. 1635-1644, 2006.
聚丁烯己二酸對苯二甲酸酯(Poly(butylene adipate-co-terephthalate),PBAT)為環境友好之生物可分解高分子,擁有類似線性低密度聚乙烯的特性,非常具有發展潛力。本研究以不同莫耳比例之己二酸及對苯二甲酸二甲酯合成出PBAT,接著將馬來酸接枝於PBAT高分子鏈上,並利用化學插層法製備出有機改質PPZn,使PBAT高分子鏈插層進入有機改質PPZn層間時能有化學鍵結產生,以增強無機物與高分子基材的相容性,更進一步探討生物可分解高分子複合材料之結晶行為與不同形貌下的生物降解行為。使用XRD鑑定己烷二胺及十二烷基二胺改質PPZn的結構排列,層間距由原本的14.6 Å分別增加至24.1 Å與16 Å。由FT-IR圖譜觀察到改質後PPZn增加了波數為2853-3005 cm-1 和1650-1550 cm-1之吸收峰,表示長鏈烷基胺成功插層進入PPZn層間中,並經由溶劑插層法製備出不同比例之PBAT/C6-PPZn及C12-PPZn奈米複合材料,由XRD圖譜及TEM影像可以判斷改質PPZn以部分剝離與部分插層且隨機分散於PBAT 基材中,且添加改質PPZn並不會改變PBAT之結晶結構,再利用TGA分析複合材料熱穩定性,得知有機改質PPZn對於PBAT具有催化裂解效果。探討透過添加入不同比例C6-PPZn及C12-PPZn對於PBAT之等溫結晶行為影響,發現C6-PPZn之添加上升會使複合材料結晶速率提升,但當C12-PPZn添加比例越高時,結晶速率則是呈現由快至遲緩的趨勢。降解測試藉由假單胞菌(Lipase from Pseudomonas sp.)酵素酶作為降解液,再進行不同形貌之PBAT及其C6-PPZ和C12-PPZ奈米複合材料之生物降解測試,由其重量損失與降解時間之變化,可得知PBAT之降解速率會隨著馬來酸的加入及改質PPZn含量上升而使降解速率增加,且多孔形貌之重量損失程度相較於薄膜形貌更加顯著。

Poly(butylene adipate-co-terephthalate) (PBAT) is an environmentally friendly biodegradable polymer which contains the comparative physical properties to that of low-density polyethylene. In this study, PBAT was synthesized from different molar ratios of adipic acid and dimethyl terephthalate. Then, the maleic acid was grafted onto PBAT polymer chain (g-PBAT) and the organically modified PPZn was sucessfully synthesized to intercalate diaminohexane and dodecanediamine into the interlayer spacing of PPZn (designated as C6-PPZn and C12-PPZn) to improve the compatibility and dispersibility between the polymer and PPZn. Furthermore, the dispersion, crystallization and biodegradability of g-PBAT/organically modified PPZn nanocomposites were investigated systemtically.
The interlayer spacing of PPZn determined by wide-angle X-ray diffraction (WAXD) was increased from 14.6 Å for PPZn to 24.1 Å and 16 Å for C6-PPZn and C12-PPZn, respectively. Compared to the PPZn, the FT-IR spectra of organically modified PPZn contain absorption bands at 2853-3005 cm-1 and 1650-1550 cm-1 for the C-H stretching vibration and NH2 deformation from diaminohexane and dodecanediamine. The g-PBAT/ organically modified PPZn nanocomposites were prepared by solvent intercalation method. The structure and morphology of the g-PBAT/ organically modified PPZn nanocomposites were characterized by WAXD and transmission electron microscopy (TEM). The results of WAXD and TEM results show that the organically modified PPZn are randomly dispersed in the PBAT matrix. However, the addition of organically modified PPZn into PBAT would not change the crystalline structure of the nanocomposites. The results of isothermal crystallization show that the crystallization rate increases when the incorporation of C6-PPZn in nanocomposites increases, in contrast to C12-PPZn. Degradation tests was used Lipase from Pseudomonas sp. as the enzymatic degradation solution. Both the increasing content of organically modified PPZn and the presence of grafted maleic acid into PBAT would increase the weight loss of PBAT. In addition, the degradation rate of the porous morphology is more significant than the film morphology.
Rights: 同意授權瀏覽/列印電子全文服務,2022-01-18起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-108-5105066019-1.pdf16.49 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.