Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97873
標題: 二氧化錫/聚苯胺/摻氮石墨烯量子點之奈米複合材料之性質研究及電化學感測分析
Preparation and Characterization of SnO2/ polyaniline/N dope graphene quantum dots Nanocomposite
作者: 許維方
Wei-Fang Hsu
關鍵字: 聚苯胺;中空二氧化錫;摻氮石墨烯量子點;電化學感測器;Polyaniline;hollow structure SnO2;N-doped graphene quantum dots;electrochemical sensor
引用: [1] P. Manivel, M. Dhakshnamoorthy, A. Balamurugan, N. Ponpandian, D. Mangalaraj, and C. Viswanathan, 'Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid,' RSC Advances, 10.1039/C3RA42322K vol. 3, no. 34, pp. 14428-14437, 2013. [2] A. Pandikumar, G. T. S. How, T. P. See, and F. S. Omar, 'Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,' in Rsc Advances, vol. 4no. 108), 2014, pp. 63296-63323. [3] R. Ban, Y. Yu, and M. Zhang, 'Synergetic SERS Enhancement in a Metal-Like/Metal Double-Shell Structure for Sensitive and Stable Application,' ACS Appl Mater Interfaces, vol. 9, no. 15, pp. 13564-13570, Apr 19 2017. [4] Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, 'Nitrogen-doped graphene and its application in electrochemical biosensing,' ACS Nano, vol. 4, no. 4, pp. 1790-8, Apr 27 2010. [5] H. Ding, H. Jiang, Z. Zhu, Y. Hu, F. Gu, and C. Li, 'Ternary SnO2@PANI/rGO nanohybrids as excellent anode materials for lithium-ion batteries,' Electrochimica Acta, vol. 157, pp. 205-210, 2015/03/01/ 2015. [6] D. Qu, M. Zheng, P. Du, and Y. Zhou, 'Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts,' Nanoscale, vol. 5, no. 24, pp. 12272-12277, 2013. [7] 歷史月刊. 歷史月刊雜誌社, 2009. [8] 江開達, '神經精神藥理學.' [9] X. Zhang, X. Chen, S. Kai, and H.-Y. Wang, 'Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles,' Analytical chemistry, vol. 87, no. 6, pp. 3360-3365, 2015. [10] Y. Leng, K. Xie, L. Ye, G. Li, Z. Lu, and J. He, 'Gold-nanoparticle-based colorimetric array for detection of dopamine in urine and serum,' Talanta, vol. 139, pp. 89-95, 2015/07/01/ 2015. [11] G. E. De Benedetto, D. Fico, A. Pennetta, and C. Malitesta, 'A rapid and simple method for the determination of 3, 4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection,' Journal of pharmaceutical and biomedical analysis, vol. 98, pp. 266-270, 2014. [12] L. K. Abdulrahman, A. M. Al-Abachi, and M. H. Al-Qaissy, 'Flow injection-spectrophotometeric determination of some catecholamine drugs in pharmaceutical preparations via oxidative coupling reaction with p-toluidine and sodium periodate,' Analytica Chimica Acta, vol. 538, no. 1, pp. 331-335, 2005/05/04/ 2005. [13] P. Wiench, Z. González, R. Menéndez, B. Grzyb, and G. Gryglewicz, 'Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides,' Sensors and Actuators B: Chemical, vol. 257, pp. 143-153, 2018/03/01/ 2018. [14] W. S. M Lambrechts 'Biosensors: Microelectrochemical Devices,' 1992. [15] B. Fan, Y. Zhu, R. Rechenberg, M. Becker, and W. Li, 'A flexible, large-scale diamond-polymer chemical sensor for neurotransmitter detection,' in Proceedings of the Hilton Head Workshop, 2016. [16] 張景順, '多孔性金酵素電極在流動注入分析系統中之電化學分析及應用,' 撰者, 2004. [17] S. N.Lvov, 'Introduction to Electrochemical Science and Engineering,' 2014. [18] M. A. Gilmartin and J. P. Hart, 'Sensing with chemically and biologically modified carbon electrodes. A review,' Analyst, vol. 120, no. 4, pp. 1029-1045, 1995. [19] R. W. Murray, A. G. Ewing, and R. A. Durst, 'Chemically modified electrodes. Molecular design for electroanalysis,' Analytical Chemistry, vol. 59, no. 5, pp. 379A-390A, 1987. [20] R. Durst, 'Chemically modified electrodes: recommended terminology and definitions (IUPAC Recommendations 1997),' Pure and Applied Chemistry, vol. 69, no. 6, pp. 1317-1324, 1997. [21] A. Pandikumar, G. T. S. How, T. P. See, F. S. Omar, S. Jayabal, and K. Z. Kamali, 'Graphene and its nanocomposite material based electrochemical sensor platform for dopamine,' RSC Advances, vol. 4, no. 108, pp. 63296-63323, 2014. [22] S. Maity and A. Chatterjee, Conductive Polymer based Electro-conductive Textiles for Novel Applications. 2015, pp. E16-E18. [23] D. E. Newton, 'Chemistry of New Materials,' 2009. [24] 黃桂武, '工業材料雜誌,' 2010. [25] B. Wessling, 'Dispersion hypothesis and non-equilibrium thermodynamics: key elements for a materials science of conductive polymers. A key to understanding polymer blends or other multiphase polymer systems,' Synthetic Metals, vol. 45, no. 2, pp. 119-149, 1991/11/01/ 1991. [26] W. Commons, 'Band Gap Comparison,' 2015. [27] W. Chen, D. Qi, X. Gao, and A. T. S. Wee, 'Surface transfer doping of semiconductors,' Progress in Surface Science, vol. 84, no. 9, pp. 279-321, 2009/09/01/ 2009. [28] A. J. Heeger, 'Semiconducting and Metallic Polymers:  The Fourth Generation of Polymeric Materials,' The Journal of Physical Chemistry B, vol. 105, no. 36, pp. 8475-8491, 2001/09/01 2001. [29] H. Letheby, 'XXIX.-On the production of a blue substance by the electrolysis of sulphate of aniline,' Journal of the Chemical Society, 10.1039/JS8621500161 vol. 15, no. 0, pp. 161-163, 1862. [30] A. G. MacDiarmid, 'Synthetic Metals': A Novel Role for Organic Polymers (Nobel Lecture),' Angewandte Chemie International Edition, vol. 40, no. 14, pp. 2581-2590, 2001. [31] E. Genies, A. Boyle, M. Lapkowski, and C. Tsintavis, 'Polyaniline: a historical survey,' Synthetic Metals, vol. 36, no. 2, pp. 139-182, 1990. [32] A. G. Macdiarmid, J. C. Chiang, A. F. Richter, and A. J. Epstein, 'Polyaniline: a new concept in conducting polymers,' Synthetic Metals, vol. 18, no. 1, pp. 285-290, 1987/02/01/ 1987. [33] S. P. Armes and J. F. Miller, 'Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate,' Synthetic Metals, vol. 22, no. 4, pp. 385-393, 1988/02/01/ 1988. [34] Y. Cao, P. Smith, and A. J. Heeger, 'Counter-ion induced processibility of conducting polyaniline,' Synthetic Metals, vol. 57, no. 1, pp. 3514-3519, 1993/04/12/ 1993. [35] J. Stejskal, A. Riede, D. Hlavatá, J. Prokeš, M. Helmstedt, and P. Holler, 'The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline,' Synthetic Metals, vol. 96, no. 1, pp. 55-61, 1998/07/15/ 1998. [36] Y. Roichman, G. I. Titelman, M. S. Silverstein, A. Siegmann, and M. Narkis, 'Polyaniline synthesis: influence of powder morphology on conductivity of solution cast blends with polystyrene,' Synthetic Metals, vol. 98, no. 3, pp. 201-209, 1999/01/01/ 1999. [37] Ş. I. Voicu, N. D. Banu, A. Nechifor, D.-I. Vaireanu, and G. Nechifor, Stefan Ioan VOICU, Nicoleta Doriana STANCIU, Aurelia Cristina NECHIFOR, Danut Ionel VAIREANU, Gheorghe NECHIFOR, Synthesis and Characterisation of Ionic Conductive Polysulfone Composite Membranes, Romanian Journal of Information, Science and Technology, Volume 12, Number 3, 2009, pp.410-422. 2009, pp. 410-422. [38] Y. Xie, S. Yu, Y. Zhong, Q. Zhang, and Y. Zhou, 'SnO2/Graphene Quantum Dots Composited Photocatalyst for Efficient Nitric Oxide Oxidation under Visible Light,' Applied Surface Science, 2018/04/16/ 2018. [39] G. Bhanjana, N. Dilbaghi, R. Kumar, A. Umar, and S. Kumar, 'Sno2 quantum dots as novel platform for electrochemical sensing of cadmium,' Electrochimica Acta, vol. 169, pp. 97-102, 2015/07/01/ 2015. [40] J. Rebholz, C. Dee, U. Weimar, and N. Barsan, 'A Self-doping Surface Effect and its Influence on the Sensor Performance of Undoped SnO2 Based Gas Sensors,' Procedia Engineering, vol. 120, pp. 83-87, 2015/01/01/ 2015. [41] N. Li, H. Sonsg, H. Cui, and C. Wang, 'SnO2 nanoparticles anchored on vertically aligned graphene with a high rate, high capacity, and long life for lithium storage,' Electrochimica Acta, vol. 130, pp. 670-678, 2014/06/01/ 2014. [42] Q. Guo, L. Liu, and M. Zhang, 'Hierarchically mesostructured porous TiO2 hollow nanofibers for high performance glucose biosensing,' Biosensors and Bioelectronics, vol. 92, pp. 654-660, 2017. [43] L. He, B. Cui, and J. Liu, 'Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion,' Sensors and Actuators B: Chemical, vol. 258, pp. 813-821, 2018. [44] P. Lu, J. Yu, Y. Lei, and S. Lu, 'Synthesis and characterization of nickel oxide hollow spheres–reduced graphene oxide–nafion composite and its biosensing for glucose,' Sensors and Actuators B: Chemical, vol. 208, pp. 90-98, 2015. [45] J. Liu, J. Huang, L. Hao, H. Liu, and X. Li, 'SnO2 nano-spheres/graphene hybrid for high-performance lithium ion battery anodes,' Ceramics International, vol. 39, no. 8, pp. 8623-8627, 2013. [46] F. Caruso, R. A. Caruso, and H. Möhwald, 'Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating,' Science, vol. 282, no. 5391, pp. 1111-1114, 1998. [47] Z. Z., Y. Y., G. B., and X. Y., 'Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads,' Advanced Materials, vol. 12, no. 3, pp. 206-209, 2000. [48] Z. Zhong, Y. Yin, B. Gates, and Y. Xia, 'Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads,' Advanced Materials, vol. 12, no. 3, pp. 206-209, 2000. [49] X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, and L. A. Archer, 'Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity,' Advanced Materials, vol. 18, no. 17, pp. 2325-2329, 2006. [50] W. Wu, S. Zhang, J. Zhou, X. Xiao, F. Ren, and C. Jiang, 'Controlled Synthesis of Monodisperse Sub‐100 nm Hollow SnO2 Nanospheres: A Template‐ and Surfactant‐Free Solution‐Phase Route, the Growth Mechanism, Optical Properties, and Application as a Photocatalyst,' Chemistry – A European Journal, vol. 17, no. 35, pp. 9708-9719, 2011. [51] K. S. Novoselov et al., 'Electric field effect in atomically thin carbon films,' science, vol. 306, no. 5696, pp. 666-669, 2004. [52] S. Benítez-Martínez and M. Valcárcel, 'Graphene quantum dots in analytical science,' TrAC Trends in Analytical Chemistry, vol. 72, pp. 93-113, 2015/10/01/ 2015. [53] K. Gong, F. Du, Z. Xia, M. Durstock, and L. Dai, 'Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction,' science, vol. 323, no. 5915, pp. 760-764, 2009. [54] Y. Li et al., 'Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups,' Journal of the American Chemical Society, vol. 134, no. 1, pp. 15-18, 2012/01/11 2012. [55] P. Dengyu, Z. Jingchun, L. Zhen, and W. Minghong, 'Hydrothermal Route for Cutting Graphene Sheets into Blue‐Luminescent Graphene Quantum Dots,' Advanced Materials, vol. 22, no. 6, pp. 734-738, 2010. [56] J. Shen, Y. Zhu, X. Yang, and C. Li, 'Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices,' Chemical communications, vol. 48, no. 31, pp. 3686-3699, 2012. [57] J. N. Gavgani et al., 'A room temperature volatile organic compound sensor with enhanced performance, fast response and recovery based on N-doped graphene quantum dots and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) nanocomposite,' RSC Advances, 10.1039/C5RA08158K vol. 5, no. 71, pp. 57559-57567, 2015. [58] Q. Li, S. Zhang, L. Dai, and L.-s. Li, 'Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction,' Journal of the American Chemical Society, vol. 134, no. 46, pp. 18932-18935, 2012/11/21 2012. [59] Y.-N. Hao, H.-L. Guo, L. Tian, and X. Kang, 'Enhanced photoluminescence of pyrrolic-nitrogen enriched graphene quantum dots,' RSC Advances, vol. 5, no. 54, pp. 43750-43755, 2015. [60] K. Ghanbari and M. Moloudi, 'Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid,' Analytical Biochemistry, vol. 512, pp. 91-102, 2016/11/01/ 2016. [61] P. Lu, J. Yu, and Y. Lei, 'Synthesis and characterization of nickel oxide hollow spheres–reduced graphene oxide–nafion composite and its biosensing for glucose,' Sensors and Actuators B: Chemical, vol. 208, pp. 90-98, 2015. [62] L. He, B. Cui, J. Liu, and Y. Song, 'Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion,' Sensors and Actuators B: Chemical, vol. 258, pp. 813-821, 2018. [63] Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang, and X.-H. Xia, 'Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid,' Biosensors and Bioelectronics, vol. 34, no. 1, pp. 125-131, 2012/04/15/ 2012. [64] J. Peng et al., 'Graphene Quantum Dots Derived from Carbon Fibers,' Nano Letters, vol. 12, no. 2, pp. 844-849, 2012/02/08 2012. [65] L. Tang, R. Ji, X. Cao, and J. Lin, 'Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,' ACS nano, vol. 6, no. 6, pp. 5102-5110, 2012. [66] B. Bali Prasad, A. Kumar, and R. Singh, 'Synthesis of novel monomeric graphene quantum dots and corresponding nanocomposite with molecularly imprinted polymer for electrochemical detection of an anticancerous ifosfamide drug,' Biosensors and Bioelectronics, vol. 94, pp. 1-9, 2017/08/15/ 2017. [67] Y. Li, Y. Jiang, T. Mo, H. Zhou, Y. Li, and S. Li, 'Highly selective dopamine sensor based on graphene quantum dots self-assembled monolayers modified electrode,' Journal of Electroanalytical Chemistry, vol. 767, pp. 84-90, 2016/04/15/ 2016. [68] W. Wei, Z. Shaofeng, Z. Juan, X. Xiangheng, R. Fen, and J. Changzhong, 'Controlled Synthesis of Monodisperse Sub-100 nm Hollow SnO2 Nanospheres: A Template- and Surfactant-Free Solution-Phase Route, the Growth Mechanism, Optical Properties, and Application as a Photocatalyst,' Chemistry – A European Journal, vol. 17, no. 35, pp. 9708-9719, 2011. [69] L. He et al., 'Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion,' Sensors and Actuators B: Chemical, vol. 258, pp. 813-821, 2018/04/01/ 2018. [70] R. Qin, L. Hao, Y. Liu, and Y. Zhang, 'Polyaniline‐ZnO Hybrid Nanocomposites with Enhanced Photocatalytic and Electrochemical Performance,' ChemistrySelect, vol. 3, no. 23, pp. 6286-6293, 2018. [71] H. Liu, N. Li, H. Zhang, F. Zhang, and X. Su, 'A simple and convenient fluorescent strategy for the highly sensitive detection of dopamine and ascorbic acid based on graphene quantum dots,' Talanta, 2018/05/03/ 2018. [72] S. Deng, G. Jian, J. Lei, Z. Hu, and H. Ju, 'A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes,' Biosensors and Bioelectronics, vol. 25, no. 2, pp. 373-377, 2009/10/15/ 2009. [73] Y. Huang et al., 'Graphene-quantum-dots induced NiCo2S4 with hierarchical-like hollow nanostructure for supercapacitors with enhanced electrochemical performance,' Electrochimica Acta, vol. 269, pp. 45-54, 2018/04/10/ 2018. [74] O. E. Fayemi, A. S. Adekunle, B. E. Kumara Swamy, and E. E. Ebenso, 'Electrochemical sensor for the detection of dopamine in real samples using polyaniline/NiO, ZnO, and Fe3O4 nanocomposites on glassy carbon electrode,' Journal of Electroanalytical Chemistry, vol. 818, pp. 236-249, 2018/06/01/ 2018. [75] M. Bagherzadeh, S. A. Mozaffari, and M. Momeni, 'Fabrication and electrochemical characterization of dopamine-sensing electrode based on modified graphene nanosheets,' Analytical Methods, 10.1039/C5AY02284C vol. 7, no. 21, pp. 9317-9323, 2015. [76] K.-J. Huang, J.-Z. Zhang, Y.-J. Liu, and L.-L. Wang, 'Novel electrochemical sensing platform based on molybdenum disulfide nanosheets-polyaniline composites and Au nanoparticles,' Sensors and Actuators B: Chemical, vol. 194, pp. 303-310, 2014/04/01/ 2014.
摘要: 
本研究利用水熱法製備中空二氧化錫奈米顆粒,並藉由原位聚合法製備二氧化錫/聚苯胺奈米複合材料,再經由靜電自主裝方式使摻氮石墨烯量子點吸附在聚苯胺表面,成功製備二氧化錫/聚苯胺/摻氮石墨烯量子點之三元複合材料。將所製備之三元複合材料修飾玻璃碳電極,對抗壞血酸、多巴胺及尿酸進行電化學感測,並透過場發式電子顯微鏡、穿透式電子顯微鏡、X-ray 繞射儀、FT-IR光譜儀及恆電位儀來進行其表面分析、結構分析與電化學分析。
首先在二氧化錫/聚苯胺二元奈米複合材料系統中,從場發式電子顯微鏡結果得知,二元奈米複合材料在5wt%之二氧化錫的添加量具有最小的尺寸,表示具有最大的表面積;而循環伏安法中得知,5wt%之二氧化錫添加量之複合材料具有最大的電流值,從26μA提升至45μA。
接著以二氧化錫/聚苯胺/摻氮石墨烯量子點之三元複合材料修飾玻璃碳電極,將此修飾電極浸泡在多巴胺溶液中利用循環伏安法與微分脈衝伏安法來進行電化學感測,其電流值從45μA提升至55μA。其線性範圍為0.5-500μM,偵測極限為0.42μM (S/N=3)。除此之外,此修飾電極在含有抗壞血酸、多巴胺及尿酸等干擾物質溶液中,在20-200μM範圍內也同樣具有良好的線性關係,且抗壞血酸與多巴胺、多巴胺與尿酸之電位差分別為160mv與150mv。以上結果顯示N-5SP具有優異的電催化效果,故本研究之三元複合材料為一個良好的多巴胺感測器。

In this study, hollow structure of SnO2 nanoparticles (SnO2 HS) have prepared by hydrothermal method. The SnO2/PANI nanocomposites were synthesis by in-situ polymerization and SnO2/PANI/NGQD ternary nanocomposites were successfully synthesis by electrostatic self-assembly approach. The prepared SnO2/PANI/NGQD was used for electrode materials of dopamine (DA) electrochemical sensor. The products of the SnO2、PANI、SnO2/PANI及SnO2/PANI/NGQD nanocomposites were characterized by SEM、TEM、XRD、FTIR . The electrochemical response of dopamine was determined by using cyclic voltammetry and different pulse voltammetry.
For the SnO2/PANI system, the result of SEM image shows the particle size of SnO2/PANI nanoparticles decrease when the SnO2 nanoparticles increase. Obviously, the surface area increase when the SnO2 nanoparticles increase. Because of excess SnO2 nanoparticles, the size of SnO2/PANI was increase. In other words, the electrochemical current value of 5wt% SnO2/PANI (5SP) was the largest because it has the smallest size. In cyclic voltammetry, the peak current of PANI is 26μA and the peak current of 5SP is 45μA.
In the system of 5SP with n-doped graphene quantum dots (N-5SP), the electrochemical response of DA by using cyclic voltammetry and differential pulse voltammetry in PBS solution. In CV mode, the peak current was increase to 55μA when the modify electrode was N-5SP. In DPV mode, the linear detection ranges for DA are 0.5-200μM (R2=0.98) and the detection limits was 0.42μM (S/N=3). Besides, the electrochemical response of this modify electrode was also determined with dopamine, ascorbic acid and uric acid in PBS solution. In DPV mode, the linear detection ranges for AA, DA and UA are 20-200μM (R2=0.98). The oxidation peak of AA, DA and UA are -50mv, 110mv and 260mv respectively. The separation of the oxidation peak potentials for AA-DA, DA-UA and AA-UA were 160mv, 150mv and 310mv, which shows the ability of anti-interference of the modify electrode. Furthermore, the result shows that the modify material of N-5SP has perfect electro catalytic properties for dopamine.
URI: http://hdl.handle.net/11455/97873
Rights: 同意授權瀏覽/列印電子全文服務,2018-09-26起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066021-1.pdf5.74 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.