Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97874
標題: 以垂直式溶液布里居曼法搭配不同Sn助熔劑配比製備n型Ba8Ga16Sn30熱電晶籠化合物
Preparation of the n-type Ba8Ga16Sn30 thermoelectric clathrates by vertical solution Bridgman method with various Sn flux content
作者: 蔡松軒
Sung-Hsuan Tsai
關鍵字: 熱電材料;Ba8Ga16Sn30晶籠化合物;垂直式溶液布里居曼法;熱電優值;thermoelectric material;Ba8Ga16Sn30 clathrates compound;vertical solution Bridgman method;figure of merit zT
引用: [1] M. Jiménez-Arreola, R. Pili, F. Dal Magro, C. Wieland, S. Rajoo, A. Romagnoli, 'Thermal power fluctuations in waste heat to power systems: An overview on the challenges and current solutions', Applied Thermal Engineering,134, (2018), 576-584. [2] E. Amiri Rad, S. Mohammadi, 'Energetic and exergetic optimized Rankine cycle for waste heat recovery in a cement factory', Applied Thermal Engineering,132, (2018), 410-422. [3] T.J. Seebeck, 'Magnetic polarization of metals and minerals', Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin,1820-21, (1822), 265-273. [4] L.I. Anatychuk, 'On the discovery of thermoelectricity by Volta', Journal of Thermoelectricity, (2004), 5-10. [5] J.C. Peltier, 'Nouvelles expériences sur la caloricité des courants électrique', Ann. Chim. Phys,56, (1834), 371-386. [6] 朱旭山,「奈米結構熱電材料之發展回顧」,工業材料雜誌,第298期,2011,134 [7] W. Thomson, 'I. Account of researches in thermo-electricity', Proceedings of the Royal Society of London,7, (1856), 49-58. [8] W. Thomson, 'XIX. On the electro-dynamic qualities of metals:—Effects of magnetization on the electric conductivity of nickel and of iron', Proceedings of the Royal Society of London,8, (1857), 546-550. [9] E. Altenkirch, 'Elektrothermische Kälteerzeugung und reversible elektrische Heizung', Physikalische Zeitschrift,12, (1911), 920-924. [10] A. Joffe, S. Airapetiants, A. Joffe, N. Kolomoetz, L. Stilbans, 'Increasing the efficiency of semiconductor thermocouples', Doklady Akademii Nauk Sssr,106, (1956), 981-981. [11] H. Goldsmid, R. Douglas, 'The use of semiconductors in thermoelectric refrigeration', British Journal of Applied Physics,5, (1954), 386. [12] B. Orr, A. Akbarzadeh, M. Mochizuki, R. Singh, 'A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes', Applied Thermal Engineering,101, (2016), 490-495. [13] H. Kaibe, T. Kajihara, S. Fujimoto, K. Makino, H. Hachiuma, 'Recovery of plant waste heat by a thermoelectric generating system', Komatsu Tech Rep,57, (2011), 26-30. [14] 朱旭山,「熱電材料與元件之原理與應用」,電子與材料雜誌,第22期,2005,78-89 [15] 洪欽港,「以垂直布里居曼法製備N型Ba8Ga16Sn30晶籠材料與其熱電特性研究」,國立中興大學材料科學與工程學系碩士論文,2013 [16] 蘇恆毅,「晶界潤覆相分布對Ba8Ga16Sn30第八型晶籠化合物之熱電性質的影響」,國立中興大學材料科學與工程學系碩士論文,2015 [17] 戴亦儒,「以溫差發電評估含不同晶界潤覆相占比之BaGaCuSn第八型晶籠化合物的熱電表現」,國立中興大學材料科學與工程學系碩士論文,2016 [18] D. Rowe, CRC handbook of thermoelectrics. 1995. CRCPress: Boca Raton, 2005, vol. 657. [19] L. Hicks, M.S. Dresselhaus, 'Thermoelectric figure of merit of a one-dimensional conductor', Physical review B,47, (1993), 16631. [20] G. Woan, The Cambridge handbook of physics formulas.Cambridge University Press, 2000. [21] C. Gayner, K.K. Kar, 'Recent advances in thermoelectric materials', Progress in Materials Science,83, (2016), 330-382. [22] P. Vaqueiro, A.V. Powell, 'Recent developments in nanostructured materials for high-performance thermoelectrics', Journal of Materials Chemistry,20, (2010), 9577-9584. [23] G.J. Snyder, E.S. Toberer, 'Complex thermoelectric materials', Nature materials,7, (2008), 105. [24] J. Fourier, Theorie analytique de la chaleur, par M. Fourier.Chez Firmin Didot, père et fils, 1822. [25] Z.-G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, 'Nanostructured thermoelectric materials: Current research and future challenge', Progress in Natural Science: Materials International,22, (2012), 535-549. [26] T.M. Tritt, Thermal conductivity: theory, properties, and applications.Springer Science & Business Media, 2005. [27] J.M. Ziman, Electrons and Phonons. 1960. [28] J.-A. Dolyniuk, B. Owens-Baird, J. Wang, J.V. Zaikina, K. Kovnir, 'Clathrate thermoelectrics', Materials Science and Engineering: R: Reports,108, (2016), 1-46. [29] H. Von Schnering, W. Carrillo-Cabrera, R. Kröner, E.-M. Peters, K. Peters, R. Nesper, 'Crystal structure of the clathrate β-Ba8Ga16Sn30', Zeitschrift für Kristallographie-New Crystal Structures,213, (1998), 719-719. [30] B. Eisenmann, H. Schäfer, R. Zagler, 'Die verbindungen AII8BIII16BIV30 (AII≡ Sr, Ba; BIII≡ Al, Ga; BIV≡ Si, Ge, Sn) und ihre käfigstrukturen', Journal of the Less Common Metals,118, (1986), 43-55. [31] D. Huo, T. Sakata, T. Sasakawa, M. Avila, M. Tsubota, F. Iga, H. Fukuoka, S. Yamanaka, S. Aoyagi, T. Takabatake, 'Structural, transport, and thermal properties of the single-crystalline type-VIII clathrate Ba8Ga16Sn30', Physical Review B,71, (2005), 075113. [32] M.A. Avila, D. Huo, T. Sakata, K. Suekuni, T. Takabatake, 'Tunable charge carriers and thermoelectricity of single-crystal Ba8Ga16Sn30', Journal of Physics: Condensed Matter,18, (2006), 1585-1592. [33] Y. Saiga, K. Suekuni, S.K. Deng, T. Yamamoto, Y. Kono, N. Ohya, T. Takabatake, 'Optimization of thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 by carrier tuning', Journal of Alloys and Compounds,507, (2010), 1-5. [34] Y.X. Chen, K. Niitani, J. Izumi, K. Suekuni, T. Takabatake, 'Vertical Bridgman growth of thermoelectric clathrate Ba8Ga16Sn30 with a type-VIII structure', Journal of Crystal Growth,402, (2014), 312-318. [35] G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley, Springer handbook of crystal growth.Springer Science & Business Media, 2010. [36] K.A. Gschneidner, L. Eyring, G.H. Lander, Handbook on the physics and chemistry of rare earths.Elsevier, 2002, vol. 32. [37] C.S. Smith, 'Grains, phases, and interfaces: An introduction of microstructure', Trans. Metall. Soc. AIME,175, (1948), 15-51. [38] B. Du, Y. Saiga, K. Kajisa, T. Takabatake, E. Nishibori, H. Sawa, 'Study of α↔ β transformation in the dimorphic clathrate Ba8Ga16Sn30', Philosophical Magazine,92, (2012), 2541-2552.
摘要: 
本實驗調整初始助熔劑配比,利用降溫曲線法量測各成分之液相線溫度。隨著助熔劑配比增加,液相線溫度會有下降趨勢;觀察液相線樣本之金相結果,若液相線溫度下降,發現潤覆現象有減少的情形。藉由量測之相變化溫度繪製成Ba8Ga16Sn30類二元相圖。
後續實驗以雙爐垂直式溶液布里居曼法改變助熔劑成分與爐體設定製備n型type Ⅷ之Ba8Ga16Sn30熱電晶籠化合物。探討液相線溫度對Ba8Ga16Sn30晶粒尺寸的影響。以助熔劑配比Ba:Ga:Sn = 8:16:65製備出Ba8Ga16Sn30熱電晶籠化合物,由剖面之金相觀察發現,Ba8Ga16Sn30晶體有大晶粒尺寸且幾乎無潤覆相。利用X-ray和EDS分析Ba8Ga16Sn30,確認其成分與結晶結構結果為第八型態Ba8Ga16Sn30晶籠化合物。對Ba8Ga16Sn30晶籠化合物進行熱電性質,分別量測電導率、Seebeck係數及熱導率,並計算出功率因子及熱電優值隨溫度變化之關係。在溫度225 ℃時,電導率為28.4 S/cm,而Seebeck係數值為-225 μV/K,熱導率為1.6 W/m·K,最後計算結果zT值為 0.045。

In this study, we first measured the liquidus temperature of Ba8Ga16Sn30 solution from Sn flux method by means of cooling curve method with various Sn flux content. With the increasing of Sn flux amount, the liquidus temperature of Ba8Ga16Sn30 solution indicated downward trend. It could be observed that the wetting phase were reduced by decreasing of liquidus temperature from metallography analysis results. Furthermore, we also plotted the pseudo-binary phase diagram of Ba8Ga16Sn30 with the phase transition temperature.
The n-type type-Ⅷ Ba8Ga16Sn30 compounds were synthesized dual by vertical solution Bridgman method in the dual furnace mode with various Sn flux contents and furnace setup. The effects of liquidus temperature on the grains size of Ba8Ga16Sn30 were investigated. The Ba8Ga16Sn30 thermoelectric clathrate from the solution with synthesized the atomic ratio of Ba:Ga:Sn = 8:16:65, has large grain sizes without wetting phase from metallography analysis results. The crystallinity and composition of compounds were respectively examined by X-ray diffraction and energy-dispersive spectroscopy, and the results demonstrated that the formed compound is the type-Ⅷ clathrates Ba8Ga16Sn30. The temperature dependence of thermoelectric properties including the Seebeck coefficient, electric conductivity and thermal conductivity of the Ba8Ga16Sn30 thermoelectric clathrates were respectively measured. And the power factor and thermoelectric figure of merit zT were calculated. At 225 ℃,the Ba8Ga16Sn30 clathrates possessed Seebeck coeifficient of -225 μV/K,while the electric conductivity was 28.4 S/cm and thermal conductivity was 1.6 W/m·K. The figure of merit zT reached the maximum value was 0.045.
URI: http://hdl.handle.net/11455/97874
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-15起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066074-1.pdf7.71 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.