Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97882
標題: 探索層狀結構二硫化錫電晶體載子傳輸
Explore Carrier Transport in Layered SnS2 Transistors
作者: 陳祖銘
Tsu-Ming Chen
關鍵字: 二硫化錫;載子傳輸;氮化硼;SnS2;Carrier Transport;h-BN
引用: [1] P.K. Bondyopadhyay, Moore's law governs the silicon revolution, Proceedings of the IEEE, 86 (1998) 78. [2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666. [3] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nature Nanotechnology, 6 (2011) 147. [4] T. Roy, M. Tosun, J.S. Kang, A.B. Sachid, S.B. Desai, M. Hettick, C.C. Hu, A. Javey, Field-effect transistors built from all two-dimensional material components, ACS Nano, 8 (2014) 6259. [5] D. Le, T.B. Rawal, T.S. Rahman, Single-layer MoS2 with sulfur vacancies: structure and catalytic application, The Journal of Physical Chemistry C, 118 (2014) 5346. [6] J. Li, J. Shen, Z. Ma, K. Wu, Thickness-controlled electronic structure and thermoelectric performance of ultrathin SnS2 nanosheets, Scientific Reports, 7 (2017) 8914. [7] S.-L. Li, K. Tsukagoshi, E. Orgiu, P. Samorì, Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors, Chemical Society Reviews, 45 (2016) 118. [8] C. Julien, M. Eddrief, I. Samaras, M. Balkanski, Optical and electrical characterizations of SnSe, SnS2 and SnSe2 single crystals, Materials Science and Engineering: B, 15 (1992) 70. [9] C.S. Rout, P.D. Joshi, R.V. Kashid, D.S. Joag, M.A. More, A.J. Simbeck, M. Washington, S.K. Nayak, D.J. Late, Enhanced field emission properties of doped graphene nanosheets with layered SnS2, Applied Physics Letters, 105 (2014) 043109. [10] L.A. Burton, T.J. Whittles, D. Hesp, W.M. Linhart, J.M. Skelton, B. Hou, R.F. Webster, G. O'Dowd, C. Reece, D. Cherns, D.J. Fermin, T.D. Veal, V.R. Dhanak, A. Walsh, Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst, Journal of Materials Chemistry A, 4 (2016) 1312. [11] T.S. Pan, D. De, J. Manongdo, A.M. Guloy, V.G. Hadjiev, Y. Lin, H.B. Peng, Field effect transistors with layered two-dimensional SnS2−xSex conduction channels: Effects of selenium substitution, Applied Physics Letters, 103 (2013) 093108. [12] Y. Huang, E. Sutter, J.T. Sadowski, M. Cotlet, O.L. Monti, D.A. Racke, M.R. Neupane, D. Wickramaratne, R.K. Lake, B.A. Parkinson, Tin Disulfide an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics, ACS Nano, 8 (2014) 10743. [13] D. De, J. Manongdo, S. See, V. Zhang, A. Guloy, H. Peng, High on/off ratio field effect transistors based on exfoliated crystalline SnS2 nano-membranes, Nanotechnology, 24 (2013) 025202. [14] H.S. Song, S.L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y.B. Cheng, K. Tsukagoshi, High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits, Nanoscale, 5 (2013) 9666. [15] L.H. Weidong Shi, Haishui Wang, Hongjie Zhang, Jianhui Yang and Pinghui Wei, Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures, Nanotechnology, 17 (2006) 2918. [16] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B.J. LeRoy, Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride, Nature materials, 10 (2011) 282. [17] K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, J. Kong, Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices, ACS Nano, 6 (2012) 8583. [18] Y. Shi, C. Hamsen, X. Jia, K.K. Kim, A. Reina, M. Hofmann, A.L. Hsu, K. Zhang, H. Li, Z.-Y. Juang, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition, Nano Letters, 10 (2010) 4134. [19] Z. Weng-Sieh, K. Cherrey, N.G. Chopra, X. Blase, Y. Miyamoto, A. Rubio, M.L. Cohen, S.G. Louie, A. Zettl, R. Gronsky, Synthesis of BxCyNz nanotubules, Physical Review B, 51 (1995) 11229. [20] K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nature Materials, 3 (2004) 404. [21] Y.Y. GH Lee, C Lee, C Dean, KL Shepard, Electron tunneling through atomically flat and ultrathin hexagonal boron nitride, Applied Physics Letters, Volume 99 (2011) 99. [22] M.-K. Joo, B.H. Moon, H. Ji, G.H. Han, H. Kim, G. Lee, S.C. Lim, D. Suh, Y.H. Lee, Understanding coulomb scattering mechanism in monolayer MoS2 channel in the presence of h-BN buffer layer, ACS Applied Materials & Interfaces, 9 (2017) 5006. [23] M.-K. Joo, B.H. Moon, H. Ji, G.H. Han, H. Kim, G. Lee, S.C. Lim, D. Suh, Y.H. Lee, Electron excess doping and effective Schottky barrier reduction on the MoS2/h-BN heterostructure, Nano Letters, 16 (2016) 6383. [24] X. Cui, G.-H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang, C.-H. Lee, D.A. Chenet, X. Zhang, L. Wang, F. Ye, Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform, Nature Nanotechnology, 10 (2015) 534. [25] X. Cui, E.-M. Shih, L.A. Jauregui, S.H. Chae, Y.D. Kim, B. Li, D. Seo, K. Pistunova, J. Yin, J.-H. Park, Low-temperature Ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes, Nano Letters, 17 (2017) 4781. [26] G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M.S. Choi, D.-Y. Lee, C. Lee, W.J. Yoo, K. Watanabe, Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures, ACS Nano, 7 (2013) 7931. [27] L. Li, I. Lee, D.H. Youn, G.H. Kim, Hopping conduction and random telegraph signal in an exfoliated multilayer MoS2 field-effect transistor, Nanotechnology, 28 (2017) 075201. [28] S.H. Song, M.-K. Joo, M. Neumann, H. Kim, Y.H. Lee, Probing defect dynamics in monolayer MoS2 via noise nanospectroscopy, Nature Communications, 8 (2017) 2121. [29] G. Ghibaudo, T. Boutchacha, Electrical noise and RTS fluctuations in advanced CMOS devices, Microelectronics Reliability, 42 (2002) 573. [30] D.A. Neamen, Semiconductor physics and devices, McGraw-Hill 1997. [31] S.M. Sze, Semiconductor devices: physics and technology, John Wiley & Sons2008. [32] Y. Xu, T. Minari, K. Tsukagoshi, J. Chroboczek, G. Ghibaudo, Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors, Journal of Applied Physics, 107 (2010) 114507. [33] Y. Xu, M. Benwadih, R. Gwoziecki, R. Coppard, T. Minari, C. Liu, K. Tsukagoshi, J. Chroboczek, F. Balestra, G. Ghibaudo, Carrier mobility in organic field-effect transistors, Journal of Applied Physics, 110 (2011) 104513. [34] D.K. Schroder, Semiconductor material and device characterization, John Wiley & Sons2006. [35] M. Haartman, M. Östling, Low-frequency noise in advanced MOS devices, Springer Science & Business Media 2007. [36] J.F. Keithley, J. YEAGER, M.-A. HRUSCH-TUPTA, Low level measurements: precision dc current voltage and resistance measurements, Cleveland: Keithley Instruments1998. [37] A. Van Der Ziel, Noise in solid-state devices and lasers, Proceedings of the IEEE, 58 (1970) 1178. [38] R. Schlaf, P. Schroeder, M. Nelson, B. Parkinson, P. Lee, K. Nebesny, N. Armstrong, Observation of strong band bending in perylene tetracarboxylic dianhydride thin films grown on SnS 2, Journal of Applied Physics, 86 (1999) 1499. [39] H. Song, S. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. Cheng, K. Tsukagoshi, High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits, Nanoscale, 5 (2013) 9666. [40] X. Xie, D. Sarkar, W. Liu, J. Kang, O. Marinov, M.J. Deen, K. Banerjee, Low-frequency noise in bilayer MoS2 transistor, ACS Nano, 8 (2014) 5633. [41] V.K. Sangwan, H.N. Arnold, D. Jariwala, T.J. Marks, L.J. Lauhon, M.C. Hersam, Low-frequency electronic noise in single-layer MoS2 transistors, Nano Letters, 13 (2013) 4351. [42] Y.F. Lin, Y. Xu, C.Y. Lin, Y.W. Suen, M. Yamamoto, S. Nakaharai, K. Ueno, K. Tsukagoshi, Origin of noise in layered MoTe2 transistors and its possible use for environmental sensors, Advanced Materials, 27 (2015) 6612. [43] S.R. Li, Y.L. Lu, W. McMahon, Y.H. Lee, N. Mielke, RTS and 1/f noise in flash memory, VLSI Technology, Systems and Applications, IEEE, 2007, 1. [44] N. Fang, K. Nagashio, A. Toriumi, Experimental detection of active defects in few layers MoS2 through random telegraphic signals analysis observed in its FET characteristics, 2D Materials, 4 (2016) 015035. [45] F. Nan, K. Nagashio, A. Toriumi, Subthreshold transport in mono-and multilayered MoS2 FETs, Applied Physics Express, 8 (2015) 065203.
摘要: 
本論文探討二硫化錫薄膜在不同襯底下的載子傳輸機制,樣品以機械剝離法分離出厚度約為5層的奈米級元件,分別以二氧化矽基板與六方氮化硼為襯底,我們透過直流、變溫、低頻雜訊量測研究襯底對於載子傳輸過程所受到的散射和缺陷影響。
在直流量測中,二硫化錫在六方氮化硼襯底(SnS2/h-BN)電性量測結果相較於二氧化矽為襯底(SnS2/SiO2)的臨界電壓由平均值-23.71 V提升到0.29 V、載子遷移率由平均值由0.98 cm2/Vs上升到6.89 cm2/Vs,次臨界擺伏平均平均值5.83 V/dec 下降至 2.76 V/dec,實驗結果以六方氮化硼做為一個電晶體襯底明顯提升了二硫化錫的電性。在變溫量測中,分析二硫化錫載子遷移率隨溫度變化趨勢,發現SnS2/SiO2系統在載子遷移率對溫度變化趨勢符合的晶格散射主導傳輸機制,而SnS2/h-BN系統則以雜質散射。
低頻雜訊量測結果,發現SnS2/SiO2系統量測擬合結果與載子遷移率變異模型相符,SnS2/h-BN系統量測擬合結果與載子數目變異模型相符,結果與直流量測結果一致。低溫的低頻雜訊量測中,SnS2/h-BN系統量測結果出現g-r雜訊,其捕捉釋放時間與室溫SnS2/SiO2系統不同,分析其缺陷能量為18 meV相較於其他文獻中同樣有硫缺陷的二硫化鉬缺陷能量為23 meV。因此六方氮化硼可以提升二硫化錫電晶體特性,並且屏蔽了來自二氧化矽基板的雜質散射與缺陷補捉對載子傳輸的影響。

In this paper, the mechanism of carrier transport of tin disulfide films under different substrates was investigated. The thickness of the nanoscale device is about 5 layers which were separated by mechanical exfoliation method. The DC measurements dependence of temperature and measurements of low-frequency noise had been carried out to demonstrate the scattering effect and the influence for carrier in silicon dioxide and hexagonal boron nitride used as device substrates.
In DC measurements, the threshold voltage of tin disulfide on hexagonal boron nitride (SnS2/h-BN system) and silicon dioxide (SnS2/SiO2 system) increased from 23.71 V to 0.29 V, the mobility of the carrier increased from 0.98 cm2/V·s to 6.89 cm2/V·s, and the subthreshold swing decreased from 5.83 V/dec to 2.76 V/dec. The experimental results showed that hexagonal boron nitride was used as a substrate to improve the electrical properties of tin disulfide. In the dc measurements in different temperature, the trend of carrier mobility versus temperature in tin disulfide system is analyzed. It is found that the lattice scattering mechanism in SnS2/SiO2 system is consistent with the temperature change trend in carrier mobility, while the impurity scattering mechanism is used in SnS2/h-BN system. The results of low-frequency noise measurement show that the fitting results of the SnS2/SiO2 system are in agreement with the carrier mobility fluctuation model. The fitting results of the SnS2/ h-BN system are in agreement with the carrier number fluctuation model consistent with the DC measurements. The low-frequency noise measurement in low temperature, g-r noise appears in SnS2 / h-BN system, and the time of carrier capture and release time is different from that in room temperature SnS2/SiO2 system. Its defect energy of 18 meV is compared with that of MoS2 which also has the sulfur defect energy of 23 meV in other literature. Therefore, hexagonal boron nitride can improve the properties of tin disulfide transistors and shield the influence of impurity scattering and defect compensation from SiO2 substrate on carrier transport.
URI: http://hdl.handle.net/11455/97882
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-02起公開。
Appears in Collections:奈米科學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105017014-1.pdf4.13 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.