Please use this identifier to cite or link to this item:
標題: 幼蟲食物與飼育溫度對雄性埃及斑蚊適存度之影響
Effects of Larval Diets and Temperature Regimes on Fitness Performances of Male Aedes aegypti (Diptera: Culicidae)
作者: 漢帝安
Hadian Iman Sasmita
關鍵字: 幼蟲飼料;飼育溫度;生命週期特徵;適存度;溫度耐受性;能量代謝儲存;不孕性昆蟲;Larval diets;rearing temperature;life history trait;fitness performance;temperature tolerance;energy metabolite reserves;SIT
引用: Alphey, L., McKemey, A., Nimmo, D., Neira Oviedo, M., Lacroix, R., Matzen, K., and Beech, C. 2013. Genetic control of Aedes mosquitoes. Pathogens and Global Health, 107(4), 170–179. Andersen, L. H., Kristensen, T. N., Loeschcke, V., Toft, S., and Mayntz, D. 2010. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. Journal of Insect Physiology, 56(4), 336–340. Armbruster, P., and Hutchinson, R. A. 2002. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). Journal of Medical Entomology, 39(4), 699–704. Arredondo-García, J. L., Hadinegoro, S. R., Reynales, H., Chua, M. N., Medina, D. R., Chotpitayasunondh, T., Tran, N. H., Deseda, C. C., Wirawan, D. N., Supelano, M. C., and Frago, C., 2018. Four-year safety follow-up of the tetravalent dengue vaccine efficacy randomized controlled trials in Asia and Latin America. Clinical Microbiology and Infection, 24(7), 755–763. Arrivillaga, J., and Barrera, R. 2004. Food as a limiting factor for Aedes aegypti in water-storage containers. Journal of Vector Ecology, 29(1), 11–20. Bargielowski, I., Kaufmann, C., Alphey, L., Reiter, P., and Koella, J. 2012. Flight performance and teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever mosquito Aedes aegypti. Vector-Borne and Zoonotic Diseases, 12(12), 1053–1058. Bayoh, M. N., and Lindsay, S. W. 2003. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bulletin of Entomological Research, 93(05), 375–381. Bellini, R., Calvitti, M., Medici, A., Carrieri, M., Celli, G. and Maini, S. 2007. Use of the sterile insect technique against Aedes albopictus in Italy: first results of a pilot trial. In Area-Wide Control of Insect Pests. Vreysen, M.J., Robinson, A.S. and Hendrichs, J. (Eds.) (pp. 505-515). Springer, Dordrecht. Benedict, M. Q., Knols, B. G. J., Bossin, H. C., Howell, P. I., Mialhe, E., Caceres, C., and Robinson, A. S. 2009. Colonisation and mass rearing: Learning from others. Malaria Journal, 8(SUPPL. 2), 1–11. Benedict, M. Q., and Robinson, A. S. 2003. The first releases of transgenic mosquitoes: An argument for the sterile insect technique. Trends in Parasitology, 19(8), 349–355. Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., and Myers, M. F. 2013. The global distribution and burden of dengue. Nature, 496(7446), p.504. Bloem, K. A., Bloem, S., and Carpenter, J. E. 2005. Impact of moth suppression/eradication programmes using the Sterile Insect Technique or Inherited Sterility BT - Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. In V. A. Dyck, J. Hendrichs, and A. S. Robinson (Eds.) (pp. 677–700). Dordrecht: Springer Netherlands. Bond, J. G., Ramírez-Osorio, A., Marina, C. F., Fernández-Salas, I., Liedo, P., Dor, A., and Williams, T. 2017. Efficiency of two larval diets for mass-rearing of the mosquito Aedes aegypti. PLoS ONE, 12(11), 1–13. Bong, L. J., Tu, W. C., Neoh, K. B., Huang, C. G., and Ting, R. X. 2018. The Effect of Insecticidal Stress on Reproductive Output of Susceptible and Field Strains of Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 55(1), 36–42. Bourtzis, K., Dobson, S. L., Xi, Z., Rasgon, J. L., Calvitti, M., Moreira, L. A., Bossin, H. C., Moretti, R., Baton, L. A., Hughes, G. L., and Mavingui, P. 2014. Harnessing mosquito–Wolbachia symbiosis for vector and disease control. Acta Tropica, 132, pp.S150-S163. Bouyer, J., and Lefrançois, T. 2014. Boosting the sterile insect technique to control mosquitoes. Trends in Parasitology, 30(6), 271–273. Briegel, H., Knusel, I., and Timmermann, S.E., 2001. Aedes aegypti: Size, reserves, survival, and flight potential. Journal of Vector Ecology, 26, pp.21-31. Briegel, H., Waltert, A., and Kuhn, R. 2001. Reproductive physiology of Aedes (Aedimorphus) vexans (Diptera: Culicidae) in relation to flight potential. Journal of Medical Entomology, 38(4), pp.557-565. Briegel, H., and Timmermann, S. E. 2001. Aedes albopictus (Diptera: Culicidae): Physiological aspects of development and reproduction. Journal of Medical Entomology, 38(4), 566–571. Bushland, B. C., Lindquist, A. W., and Knipling, E. F. 1955. Eradication of screw-worms through release of sterilized males. Science (Washington), 122: 287–288. Calkins, C. O., and Parker, A. G. 2005. Sterile insect quality BT - Sterile Insect Technique: Principles and practice in Area-Wide Integrated Pest Management.' In eds. V A Dyck, J Hendrichs, and A S Robinson. Dordrecht: Springer Netherlands, 269–296. Callahan, A. G., Ross, P. A., and Hoffmann, A. A., 2018. Small females prefer small males: Size assortative mating in Aedes aegypti mosquitoes. bioRxiv, p.328930. Carrington, L. B., Armijos, M. V., Lambrechts, L., Barker, C. M., and Scott, T. W., 2013. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PloS one, 8(3), p.e58824. Carvalho, D. O., McKemey, A. R., Garziera, L., Lacroix, R., Donnelly, C. A., Alphey, L., Malavasi, A., and Capurro, M. L. 2015. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Neglected Tropical Diseases, 9(7), p.e0003864. Chambers, E. W., Hapairai, L., Peel, B. A., Bossin, H., and Dobson, S. L. 2011. Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions. PLoS Neglected Tropical Diseases, 5(8), 1–6. Chambers, G. M., and Klowden, M. J. 1990. Correlation of nutritional reserves with a critical weight for pupation in larval Aedes aegypti mosquitoes. Journal of the American Mosquito Control Association, 6(3), 394–399. Cohen, A. C. 2015. Insect diets: science and technology. Boca Raton: CRC Press Inc. Couret, J., Dotson, E., and Benedict, M. Q. 2014. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE, 9(2), p.e87468. Dame, D. A., Benedict, M. Q., Robinson, A. S., and Knols, B. G. J. 2009. Historical applications of induced sterilisation in field populations of mosquitoes. Malaria Journal, 8(SUPPL. 2), 1–10. Damiens, D., Benedict, M. Q., Wille, M., and Gilles, J. R. L. 2012. An inexpensive and effective larval diet for Anopheles arabiensis (Diptera: Culicidae): Eat like a horse, a bird, or a fish? Journal of Medical Entomology, 49(5), 1001–1011. Delatte, H., Gimonneau, G., Triboire, A., and Fontenille, D. 2009. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. Journal of Medical Entomology, 46(1), 33–41. Enkerlin, W. R. 2005. Impact of fruit fly control programmes using the Sterile Insect Technique BT - Sterile Insect Technique: Principles and practice in Area-Wide Integrated Pest Management. In V. A. Dyck, J. Hendrichs, and A. S. Robinson (Eds.) (pp. 651–676). Dordrecht: Springer Netherlands. Farjana, T., Tuno, N., and Higa, Y. 2012. Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Medical and Veterinary Entomology, 26(2), 210–217. Foster, W. A., and Lea, A. O. 1975. Sexual behavior maturation in male Aedes triseriatus (Diptera: Culicidae): a re-examination.' Journal of Medical Entomology 12.(4): 459-463. Gunathilaka, P. A. D. H. N., Uduwawala, U. M. H. U., Udayanga, N. W. B. A. L., Ranathunge, R. M. T. B., Amarasinghe, L. D., and Abeyewickreme, W. 2018. Determination of the efficiency of diets for larval development in mass rearing Aedes aegypti (Diptera: Culicidae). Bulletin of Entomological Research, 108(5), 583–592. Hapairai, L. K., Marie, J., Sinkins, S. P., and Bossin, H. C. 2014. Effect of temperature and larval density on Aedes polynesiensis (Diptera: Culicidae) laboratory rearing productivity and male characteristics. Acta Tropica, 132(1), S108–S115. Harris, A. F., Nimmo, D., McKemey, A. R., Kelly, N., Scaife, S., Donnelly, C. A., Beech, C., Petrie, W. D., and Alphey, L., 2011. Field performance of engineered male mosquitoes. Nature Biotechnology, 29(11), 1034-1037. Helinski, M. E. H., Parker, A. G., and Knols, B. G. J. 2009. Radiation biology of mosquitoes. Malaria Journal, 8(SUPPL. 2), 1–13. Hoffmann, A. A., Chown, S. L., and Clusella-Trullas, S. 2013. Upper thermal limits in terrestrial ectotherms: How constrained are they? Functional Ecology, 27(4), 934–949. Jones, J. C., and Wheeler, R. E. 1965. Studies on Spermathecal Filling in Aedes aegypti (Linnaeus). I. Description. The Biological Bulletin, 129(1): 134–50. Joy, T. K., Arik, A. J., Corby-Harris, V., Johnson, A. A., and Riehle, M. A. 2010. The impact of larval and adult dietary restriction on lifespan, reproduction and growth in the mosquito Aedes aegypti. Experimental Gerontology, 45(9), 685–690. Kamimurai, K., Matsusei, I. T., Takahashii, H., Komukaii, J., Fukudai, T., and Suzukii, K. 2002. Effect of temperature on the development of Aedes aegypti and Aedes albopictus. Medical Entomology and Zoology, 53(1), pp.53-58.. Kaufmann, C., and Briegel, H. 2004. Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus. Journal of Vector Ecology, 29, pp.140-153. Khan, I., Farid, A., and Zeb, A. 2013. Development of inexpensive and globally available larval diet for rearing Anopheles stephensi (Diptera: Culicidae) mosquitoes. Parasites and Vectors, 6(1), 2–8. Kittayapong, P., Kaeothaisong, N., Ninphanomchai, S., and Limohpasmanee, W. 2018. Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Parasites and Vectors, 11(S2), 657. Klassen, W., and Curtis, C. F. 2005. History of the sterile insect technique BT - Sterile Insect Technique: Principles and practice in Area-Wide Integrated Pest Management. In V. A. Dyck, J. Hendrichs, & A. S. Robinson (Eds.) (pp. 3–36). Dordrecht: Springer Netherlands. Knipling, E. F., Laven, H., Craig, G. B., Pal, R., Kitzmiller, J. B., Smith, C. N., and Brown, A. W. 1968. Genetic control of insects of public health importance. Bulletin of the World Health Organization, 38(3), 421–438. Koenraadt, C. J. M. 2008. Pupal dimensions as predictors of adult size in fitness studies of Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 45(2), 331–336. Lacroix, R., McKemey, A. R., Raduan, N., Kwee Wee, L., Hong Ming, W., Guat Ney, T., Siti Rahidah, A. A., Salman, S., Subramaniam, S., Nordin, O., Norhaida Hanum, A. T., Angamuthu, C., Mansor, S. M., Lees, R. S., Naish, N., Scaife, S., Gray, P., Lebbe, G., Beech, C., Nimmo, D., Alphey, L., Vasan, S. S., Lim, L. H., Nazni Wasi, and A., Murad, S. 2012. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLoS ONE, 7(8), 1–9. Lamb, C. G. 1922. The geometry of insect pairing. Proceedings of the Royal Society of London Series B, 94(656): 1-11. Lebon, C., Soupapoule, K., Wilkinson, D. A., Le Goff, G., Damiens, D., and Gouagna, L. C. 2018. Laboratory evaluation of the effects of sterilizing doses of γ-rays from Caesium-137 source on the daily flight activity and flight performance of Aedes albopictus males. PLoS ONE, 13(8), e0202236. Leyva, A., Quintana, A., Sánchez, M., Rodríguez, E. N., Cremata, J., and Sánchez, J. C. 2008. Rapid and sensitive anthrone-sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: Method development and validation. Biologicals, 36(2), 134–141. Lorenz, Matthias W., and Anurag N. Anand. 2004. Changes in the biochemical composition of fat body stores during adult development of female crickets, Gryllus bimaculatus. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 56(3): 110-119. Lyons, C. L., Coetzee, M., Terblanche, J. S., and Chown, S. L. 2012. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus. Malaria Journal, 11(1), 226. Maciel‐de‐Freitas, R., Codeco, C. T., and Lourenço‐de‐Oliveira, R. 2007. Body size‐associated survival and dispersal rates of Aedes aegypti in Rio de Janeiro. Medical and Veterinary Entomology, 21(3), pp.284-292. Mamai, W., Lobb, L. N., Bimbilé Somda, N. S., Maiga, H., Yamada, H., Lees, R. S., Bouyer, J., and Gilles, J. R. L. 2018. Optimization of mass-rearing methods for Anopheles arabiensis larval stages: Effects of rearing water temperature and larval density on mosquito life-history traits. Journal of Economic Entomology, 111(5), 2383–2390. Marrelli, M. T., Moreira, C. K., Kelly, D., Alphey, L., and Jacobs-Lorena, M. 2006. Mosquito transgenesis: what is the fitness cost? Trends in Parasitology, 22(5), 197–202. Medici, A., Carrieri, M., Scholte, E.-J., Maccagnani, B., Dindo, M. L., and Bellini, R. 2011. Studies on Aedes albopictus larval mass-rearing optimization. Journal of Economic Entomology, 104(1), 266–273. Miyatake, T. 1997. Correlated responses to selection for developmental period in Bactrocera cucurbitae (Diptera: Tephritidae): Time of mating and daily activity rhythms. Behavior Genetics, 27(5), 489–498. Miyatake, T., and Haraguchi, D. 1996. Mating success in Bactrocera cucurbitae (Diptera: Tephritidae) under different rearing densities. Annals of the Entomological Society of America, 89(2), 284–289. Mohammed, A., and Chadee, D. D. 2011. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Tropica, 119(1), 38–43. Mourya, D. T., Yadav, P., and Mishra, A. C. 2004. Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus. The American Journal of Tropical Medicine and Hygiene 70.4: 346-350. Myers, J. H. 1978. Sex ratio adjustment under food stress: maximization of quality or numbers of offspring?. The American Naturalist, 112(984), pp.381-388. Nasci R. S. 1991. Influence of larval and adult nutrition on biting persistence in Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, v. 28(4), 522-526. Nestel, D., and Nemny-Lavy, E. 2008. Nutrient balance in medfly, Ceratitis capitata, larval diets affects the ability of the developing insect to incorporate lipid and protein reserves. Entomologia Experimentalis et Applicata, 126(1), 53–60. Nisbet, R. M., Muller, E. B., Lika, K., and Kooijman, S. A. L. M. 2000. From molecules to ecosystems through dynamic energy budget models. Journal of Animal Ecology, 69(6), 913–926. O'Connor, L., Plichart, C., Sang, A. C., Brelsfoard, C. L., Bossin, H. C., and Dobson, S. L. 2012. Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Neglected Tropical Diseases, 6(11). p.e1797. Packer, M. J., and Corbet, P. S. 1989. Size variation and reproductive success of female Aedes punctor (Diptera: Culicidae). Ecological Entomology, 14(3), 297–309. Ponlawat, A., and Harrington, L. C. 2009. Factors associated with male mating success of the dengue vector mosquito, Aedes aegypti, The American Journal of Tropical Medicine and Hygiene, 80(3), 395–400. Puggioli, A., Balestrino, F., Damiens, D., Lees, R. S., Soliban, S. M., Madakacherry, O., Dindo, M. L., Bellini, R., and Gilles, J. R. L. 2013. Efficiency of three diets for larval development in mass rearing Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 50(4), 819–825. Puggioli, A., Carrieri, M., Dindo, M. L., Medici, A., Lees, R. S., Gilles, J. R. L., and Bellini, R. 2017. Development of Aedes albopictus (Diptera: Culicidae) larvae under different laboratory conditions. Journal of Medical Entomology, 54(1), 142–149. Reiter, P. 2001. Climate change and mosquito-borne disease. Environmental Health Perspectives, 109(Suppl 1), p.141. Ritchie, S. A., van den Hurk, A. F., Smout, M. J., Staunton, K. M., and Hoffmann, A. A. 2018. Mission accomplished? We need a guide to the 'post release' world of Wolbachia for Aedes-borne disease control. Trends in Parasitology, 34(3), 217–226. Roth, L. M. 1948. A study of mosquito behavior. an experimental laboratory study of the sexual behavior of Aedes aegypti (linnaeus). The American Midland Naturalist, 40(2), 265–352. Russell, I. 2016. Yeast. Brewing materials and processes: a practical approach to beer excellence. Elsevier Inc. Sawadogo, S. P., Diabaté, A., Toé, H. K., Sanon, A., Lefevre, T., Baldet, T., Gilles, J., Simard, F., Gibson, G., Sinkins, S., and Dabiré, R. K. 2013. Fffects of age and size on Anopheles gambiae s.s. male mosquito mating success. Journal of Medical Entomology, 50(2), 285–293. Somda, N. S. B., Dabiré, K. R., Maiga, H., Yamada, H., Mamai, W., Gnankiné, O., Diabaté, A., Sanon, A., Bouyer, J., and Gilles, J. L. 2017. Cost-effective larval diet mixtures for mass rearing of Anopheles arabiensis Patton (Diptera: Culicidae). Parasites and Vectors, 10(1), 1–12. Thomson, N. S. 2003. Trehalose-the insect 'blood' sugar. Adv Insect Physiol, 31, 203–285. Timmermann, S. E., and Briegel, H. 1999. Larval growth and biosynthesis of reserves in mosquitoes. Journal of Insect Physiology 45(5): 461–70. Tun-Lin, W., Burkot, T. R., and Kay, B. H. 2000. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Medical and Veterinary Entomology, 14(1), 31–37. Van Handel, E. 1985. Rapid determination of glycogen and sugar in mosquitoes. Journal of the American Mosquito Control Association, 1(3), 299–304. Van Handel, E. 1988. Nutrient accumulation in three mosquitoes during larval development and its effect on young adults. Journal of the American Mosquito Control Association 4.3: 374-376. Vreysen, M. J. B., Saleh, K. M., Ali, M. Y., Abdulla, A. M., Zhu, Z.-R., Juma, K. G., Dyck, V. A., Msangi, A. R., Mkonyi, P. A., and Feldmann, H. U. 2000. Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the Sterile Insect Technique. Journal of Economic Entomology, 93(1), 123–135. Wilkinson, D. A., Lebon, C., Wood, T., Rosser, G., and Gouagna, L. C. 2014. Straightforward multi-object video tracking for quantification of mosquito flight activity. Journal of Insect Physiology, 71, 114–121. World Health Organization (WHO). 2017. Chikungunya. World Health Organization (WHO). 2018. Zika Virus. Xue, R.-D., Barnard, D. R., and Muller, G. C. 2010. Effects of body size and nutritional regimen on survival in adult Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 47(5), 778–782. Yahouédo, G. A., Djogbénou, L., Saïzonou, J., Assogba, B. S., Makoutodé, M., Gilles, J. R. L., Maïga, H., Mouline, K., Soukou, B. K., and Simard, F. 2014. Effect of three larval diets on larval development and male sexual performance of Anopheles gambiae s.s. Acta Tropica, 132(1), S96–S101. Yeap, H. L., Endersby, N. M., Johnson, P. H., Ritchie, S. A., and Hoffmann, A. A. 2013. Body size and wing shape measurements as quality indicators of Aedes aegypti mosquitoes destined for field release. American Journal of Tropical Medicine and Hygiene, 89(1), 78–92.
品質較好的不孕性雄蚊能夠競爭交配贏過野生品系的雄蚊,這是埃及斑蚊不孕性防治策略的關鍵。為了大規模生產,迄今開發了多種具有成本效益的蚊子幼蟲食物,但幼蟲時期的食物對雄蚊適存度的影響所知之甚少。本研究比較Khan等人在2013年開發的穀類-豆類幼蟲食物,與聯合國糧農組織/國際原子能總署害蟲控制實驗室開發的標準幼蟲飼料 (IAEA 2),在不同溫度下分別對雄蚊適存度之影響。在不同的幼蟲食物和溫度條件下,研究了一系列雄性適存指數,如葡萄糖,肝糖和海藻糖等醣類之能量水平、逆境耐受程度和雄性埃及斑蚊的交配能力。結果顯示在不同的幼蟲飼料飼養下,雄性的耐冷性和交配能力沒有顯著差異。然而與IAEA 2食物相比,Khan飼料飼養的幼蟲表現出較短的幼蟲發育時間(除了25°C以外,每個測試溫度下皆快1-2天)、較高的成年羽化率,28°C(100%)和32°C(97.2%)以及更高的成蟲壽命(與IAEA2飼料相比,在糖水飼養下多活5-6天;在純水的飼養下多活2-3天)。然而,隨著溫度的升高,幼蟲的發育時間縮短並導致雄蚊具有較高的能量儲存,進而讓雄蚊能夠增加對高溫的耐受性。在28°C和32°C溫度下,兩種食物飼養之雄蚊,頭胸部和翅膀長度的形態學測量有顯著差異(Khan食物比IAEA2減少1.03-1.05倍),但隨著溫度梯度實驗成比例下降。在雄蚊大規模飼養情況下,較長的幼蟲發育時間會導致更多的成本支出,例如幼蟲食物和飼育人員的工資。因此在大規模飼養前應考慮到幼蟲食物與飼養溫度之間相互作用對成蟲性別比及化蛹綠的影響;但較長的幼蟲發育時間又使雄蚊有較高能量的儲存,可以具有更長壽命和對於極端氣候有更好的耐受性,也會增加與野外雌性交配的機率。因此在大量飼養前要多加考慮幼蟲食物及飼養溫度對於飼養後雄蚊的影響。

High quality sterile males that able to outcompete wild males for mating is a critical aspect in Aedes aegypti birth control strategies. To date, varying cost-effective larval diets were developed for mass production purpose, but little is known about the effect of larval diet on male fitness performances. In the present study, we compared two larval diets: cereals-legumes by Khan et al. (2013) and a standard larval diet developed in FAO/IAEA Insect Pest Control Laboratory that, so far, being deployed as main larval diets for mass production. A series of male fitness performance parameters such as level of teneral energy (glucose, glycogen and trehalose), tolerance of harsh conditions and mating capacity of male mosquito, as well as immature biological characteristics were examined under different larval diets and temperature regimes. The result showed that cold tolerance and mating capacity of males generally were not significantly different among the larval diets tested. However, Khan's diet demonstrated shorter immature development time (1-2 days faster at each test temperature with exception of 25°C), higher adult eclosion rate at 28oC (100%) and 32oC (97.2%) and higher adult longevity (5-6 days longer in sugar-fed and 2-3 days longer in water-fed situation) in male mosquito compared to IAEA 2 diet. Nevertheless, as temperature increased, the immature developmental time shortened and resulted in higher teneral energy reserves in male mosquito, and thus allow the male mosquito to tolerate heat stress. Morphological measurements for cephalothorax and wing length were significantly different between two tested diets at 28 and 32oC (1.03-1.05 times smaller for Khan's diet), but the trend was proportionally decreased with temperature tested. In relation with male mass rearing aspects, longer immature development time would consequence in more resources, such as amount of larval diet and labor will be involved. Secondary sex ratio manipulation and pupal production affected by interaction between larval diets and high rearing temperature should be taking into account. Males that had a longer life span and better endurance against extreme weather attributable to the accumulations of energy metabolic reserves may have higher change to mate with wild females in the field.
Rights: 同意授權瀏覽/列印電子全文服務,2019-02-01起公開。
Appears in Collections:昆蟲學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-108-7105036024-1.pdf1.67 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.