Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorChia-Yu Wangen_US
dc.identifier.citationAggarwal, D. D., P. Ranga, B. Kalra, R. Parkash, E. Rashkovetsky, and L. E. Bantis. 2013. Rapid effects of humidity acclimation on stress resistance in Drosophila melanogaster. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 166: 81-90. Arrese, E. L., and J. L. Soulages. 2010. Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology 55: 207-225. Bayley, M., and M. Holmstrup. 1999. Water vapor absorption in arthropods by accumulation of myoinositol and glucose. Science 285: 1909-1911. Bazinet, A. L., K. E. Marshall, H. A. MacMillan, C. M. Williams, and B. J. Sinclair. 2010. Rapid changes in desiccation resistance in Drosophila melanogaster are facilitated by changes in cuticular permeability. Journal of Insect Physiology 56: 2006-2012. Benoit, J. B. 2010. Water management by dormant insects: comparisons between dehydration resistance during summer aestivation and winter diapause, pp. 209-229, Aestivation. Springer. Benoit, J. B., and D. L. Denlinger. 2007. Suppression of water loss during adult diapause in the northern house mosquito, Culex pipiens. Journal of Experimental Biology 210: 217-226. Benoit, J. B., J. A. Yoder, E. J. Rellinger, J. T. Ark, and G. D. Keeney. 2005. Prolonged maintenance of water balance by adult females of the American spider beetle, Mezium affine Boieldieu, in the absence of food and water resources. Journal of Insect Physiology 51: 565-573. Benoit, J. B., G. Lopez-Martinez, M. A. Elnitsky, R. E. Lee Jr, and D. L. Denlinger. 2009. Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 152: 518-523. Benoit, J. B., G. Lopez-Martinez, M. R. Michaud, M. A. Elnitsky, R. E. Lee Jr, and D. L. Denlinger. 2007. Mechanisms to reduce dehydration stress in larvae of the Antarctic midge, Belgica antarctica. Journal of Insect Physiology 53: 656-667. Boctor, I. Z. 1974. Carbohydrates in the haemolymph of the cotton leaf-worm, Spodoptera littoralis Boisduval larvae (Lepidoptera: Noctuidae). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 49: 79-82. Bong, L. J., K. B. Neoh, and T. Yoshimura. 2018. Comparison of Water Relation in Two Powderpost Beetles Relative to Body Size and Ontogenetic and Behavioral Traits. Environmental Entomology. Bong, L. J., K. B. Neoh, Z. Jaal, and C. Y. Lee. 2012. Life Table of Paederus fuscipes (Coleoptera: Staphylinidae). Journal of Medical Entomology 49: 451-460. Bong, L. J., K. B. Neoh, Z. Jaal, and C. Y. Lee. 2013a. Influence of Temperature on Survival and Water Relations of Paederus fuscipes (Coleoptera: Staphylinidae). Journal of Medical Entomology 50: 1003-1013. Bong, L. J., K. B. Neoh, C. Y. Lee, and Z. Jaal. 2013b. Dispersal pattern of Paederus fuscipes (Coleoptera: Staphylinidae: Paederinae) in relation to environmental factors and the annual rice crop cycle. Environmental Entomology 42: 1013-1019. Bong, L. J., K. B. Neoh, Z. Jaal, and C. Y. Lee. 2015. Paederus Outbreaks in Human Settings: A Review of Current Knowledge. Journal of Medical Entomology 52: 517-526. Bowler, K., and J. S. Terblanche. 2008. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biological Reviews 83: 339-355. Cooper, P. D. 1985. Seasonal Changes in Water Budgets in Two Free-Ranging Tenebrionid Beetles, Eleodes armata and Cryptoglossa verrucosa. Physiological Zoology 58: 458-472. Cornette, R., and T. Kikawada. 2011. The induction of anhydrobiosis in the sleeping chironomid: current status of our knowledge. International Union of Biochemistry and Molecular Biology 63: 419-429. Crowe, J. H., L. M. Crowe, J. F. Carpenter, and C. A. Wistrom. 1987. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochemical Journal 242: 1. Edney, E. B. 1977. Water balance in land arthropods, Springer-Verlag. Elnitsky, M. A., S. A. Hayward, J. P. Rinehart, D. L. Denlinger, and R. E. Lee. 2008. Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. Journal of Experimental Biology 211: 524-530. Engl, T., N. Eberl, C. Gorse, T. Krüger, T. H. Schmidt, R. Plarre, C. Adler, and M. Kaltenpoth. 2018. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Molecular Ecology 27: 2095-2108. Everaerts, C., J. P. Farine, M. Cobb, and J.-F. Ferveur. 2010. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PloS one 5: e9607. Farnesi, L. C., H. C. Vargas, D. Valle, and G. L. Rezende. 2017. Darker eggs resist more to desiccation: the case of melanin in Aedes, Anopheles and Culex mosquito vectors. bioRxiv: 109223. Folk, D. G., C. Han, and T. J. Bradley. 2001. Water acquisition and partitioning in Drosophila melanogaster: effects of selection for desiccation-resistance. Journal of Experimental Biology 204: 3323-3331. Foo, F. K., A. S. Othman, and C. Y. Lee. 2011. Physiological changes in major soldiers of Macrotermes gilvus (Isoptera: Termitidae) induced by the endoparasitoid Misotermes mindeni (Diptera: Phoridae). Journal of Insect Physiology 57: 1495-1500. Fukaya, M., T. Akino, T. Yasuda, S. Wakamura, S. Satoda, and S. Senda. 2000. Hydrocarbon components in contact sex pheromone of the white-spotted longicorn beetle, Anoplophora malasiaca (Thomson)(Coleoptera: Cerambycidae) and pheromonal activity of synthetic hydrocarbons. Entomological Science 3: 211-218. Gantz, J., and R. E. Lee. 2015. The limits of drought-induced rapid cold-hardening: extremely brief, mild desiccation triggers enhanced freeze-tolerance in Eurosta solidaginis larvae. Journal of Insect Physiology 73: 30-36. Geiselhardt, S., T. Otte, and M. Hilker. 2009. The role of cuticular hydrocarbons in male mating behavior of the mustard leaf beetle, Phaedon cochleariae (F.). Journal of Chemical Ecology 35: 1162. Gibbs, A., and J. G. Pomonis. 1995. Physical properties of insect cuticular hydrocarbons: the effects of chain length, methyl-branching and unsaturation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 112: 243-249. Gibbs, A. G. 1998. Water-Proofing Properties of Cuticular Lipids. American Zoologist 38: 471-482. Gibbs, A. G., and T. A. Markow. 2001. Effects of age on water balance in Drosophila species. Physiological and Biochemical Zoology 74: 520-530. Gibbs, A. G., A. K. Chippindale, and M. R. Rose. 1997. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. Journal of Experimental Biology 200: 1821-1832. Gray, E. M., and T. J. Bradley. 2005. Physiology of desiccation resistance in Anopheles gambiae and Anopheles arabiensis. The American journal of tropical medicine and hygiene 73: 553-559. Green, J. L., and C. A. Angell. 1989. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. The Journal of Physical Chemistry 93: 2880-2882. Hadley, N. F. 1994. Water relations of terrestrial arthropods, Academic Press. Hadley, N. F., and T. D. Schultz. 1987. Water loss in three species of tiger beetles (Cicindela): correlations with epicuticular hydrocarbons. Journal of Insect Physiology 33: 677-682. Hu, J., K.-B. Neoh, A. G. Appel, and C.-Y. Lee. 2012. Subterranean termite open-air foraging and tolerance to desiccation: Comparative water relation of two sympatric Macrotermes spp.(Blattodea: Termitidae). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 161: 201-207. Jindra, M., and F. Sehnal. 1990. Linkage between diet humidity, metabolic water production and heat dissipation in the larvae of Galleria mellonella. Insect Biochemistry 20: 389-395. Kalra, B., and R. Parkash. 2016. Effects of saturation deficit on desiccation resistance and water balance in seasonal populations of a tropical drosophilid- Zaprionus indianus. Journal of Experimental Biology: jeb. 141002. King, K. J., and B. J. Sinclair. 2015. Water loss in tree weta (Hemideina): adaptation to the montane environment and a test of the melanisation–desiccation resistance hypothesis. Journal of Experimental Biology 218: 1995-2004. Lyons, C. L., M. Coetzee, J. S. Terblanche, and S. L. Chown. 2012. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus. Malaria Journal 11: 226. Lyons, C. L., M. Coetzee, J. S. Terblanche, and S. L. Chown. 2014. Desiccation tolerance as a function of age, sex, humidity and temperature in adults of the African malaria vectors Anopheles arabiensis Patton and Anopheles funestus Giles. The Journal of Experimental Biology. Meeh, K .1897.Oberflächenm essungen des menschlichen Körpers. Zeitschr. Biol 425– 458. Matzkin, L., T. D. Watts, and T. A. Markow. 2007. Desiccation resistance in four Drosophila species: sex and population effects. Fly 1: 268-273. Mayekar, H. V., and U. Kodandaramaiah. 2017. Pupal colour plasticity in a tropical butterfly, Mycalesis mineus (Nymphalidae: Satyrinae). PloS one 12: e0171482. Nelson, D. R., and R. E. Lee Jr. 2004. Cuticular lipids and desiccation resistance in overwintering larvae of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 138: 313-320. Nettles, W. C., B. Parro, C. Sharbaugh, and C. L. Mangum. 1971. Trehalose and other carbohydrates in Anthonomus grandis, Heliothis zea, and Heliothis virescens during growth and development. Journal of Insect Physiology 17: 657-675. Packard, G. C., and T. J. Boardman. 1999. The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 122: 37-44. Parkash, R., and P. Ranga. 2013. Sex-specific divergence for adaptations to dehydration stress in Drosophila kikkawai. Journal of Experimental Biology 216: 3301-3313. Parkash, R., B. Kalra, and V. Sharma. 2008. Changes in cuticular lipids, water loss and desiccation resistance in a tropical drosophilid: analysis of variation between and within populations. Fly 2: 189-197. Parkash, R., D. D. Aggarwal, B. Kalra, and P. Ranga. 2011. Divergence of water balance mechanisms in two melanic Drosophila species from the western Himalayas. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 158: 531-541. Pedersen, P., and M. Holmstrup. 2003. Freeze or dehydrate: only two options for the survival of subzero temperatures in the arctic enchytraeid Fridericia ratzeli. Journal of Comparative Physiology B 173: 601-609. Peschke, K., and M. Metzler. 1987. Cuticular hydrocarbons and female sex pheromones of the rove beetle, Aleochara curtula (Goeze)(Coleoptera: Staphylinidae). Insect biochemistry 17: 167-178. Rajpurohit, S., L. M. Peterson, A. J. Orr, A. J. Marlon, and A. G. Gibbs. 2016. An experimental evolution test of the relationship between melanism and desiccation survival in insects. PloS one 11: e0163414. Rajpurohit, S., R. Hanus, V. Vrkoslav, E. L. Behrman, A. O. Bergland, D. Petrov, J. Cvačka, and P. S. Schmidt. 2017. Adaptive dynamics of cuticular hydrocarbons in Drosophila. Journal of evolutionary biology 30: 66-80. Ring, R. 1998. The role of trehalose in cold-hardiness and desiccation. Cryo-Lett. 19: 275-282. Rourke, B. C. 2000. Geographic and altitudinal variation in water balance and metabolic rate in a California grasshopper, Melanoplus sanguinipes. Journal of Experimental Biology 203: 2699-2712. Shelton, T. G., and J. K. Grace. 2003. Cuticular permeability of two species of Coptotermes Wasmann (Isoptera: Rhinotermitidae). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 134: 205-211. Shen, Q.-D., M.-M. Yang, G.-Q. Xie, H.-J. Wang, L. Zhang, L.-Y. Qiu, S.-G. Wang, and B. Tang. 2017. Excess trehalose and glucose affects chitin metabolism in brown planthopper (Nilaparvata lugens). Journal of Asia-Pacific Entomology 20: 449-455. Sponsler, R., and A. Appel. 1990. Aspects of the water relations of the Formosan and eastern subterranean termites (Isoptera: Rhinotermitidae). Environmental Entomology 19: 15-20. Stinziano, J. R., R. J. Sové, H. D. Rundle, and B. J. Sinclair. 2015. Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 180: 38-42. Team, R. C. 2014. R language definition. Vienna, Austria: R foundation for statistical computing. Terhzaz, S., L. Alford, J. G. Yeoh, R. Marley, A. J. Dornan, J. A. Dow, and S. A. Davies. 2018. Renal neuroendocrine control of desiccation and cold tolerance by Drosophila suzukii. Pest Management Science 74: 800-810. Toolson, E. C. 1984. Interindividual variation in epicuticular hydrocarbon composition and water loss rates of the cicada Tibicen dealbatus (Homoptera: Cicadidae). Physiological zoology 57: 550-556. Välimäki, P., S. M. Kivelä, J. Raitanen, V. M. Pakanen, E. Vatka, M. I. Mäenpää, N. Keret, and T. Tammaru. 2015. Larval melanism in a geometrid moth: promoted neither by a thermal nor seasonal adaptation but desiccating environments. Journal of Animal Ecology 84: 817-828. Van Handel, E. 1985. Rapid determination of glycogen and sugars in mosquitoes. J. Am. Mosq. Control Assoc 1: 299-301. Watanabe, M., T. Kikawada, A. Fujita, and T. Okuda. 2005. Induction of anhydrobiosis in fat body tissue from an insect. Journal of insect physiology 51: 727-731. Watanabe, M., T. Kikawada, N. Minagawa, F. Yukuhiro, and T. Okuda. 2002. Mechanism allowing an insect to survive complete dehydration and extreme temperatures. Journal of Experimental Biology 205: 2799-2802. Wharton, G. 1985. Water balance of insects, pp. 565-601, Regulation: Digestion, Nutrition, Excretion. Elsevier. Wicker-Thomas, C. 2007. Pheromonal communication involved in courtship behavior in Diptera. Journal of Insect Physiology 53: 1089-1100. Worland, M., G. Grubor-Lajsic, and P. Montiel. 1998. Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the Arctic collembolan Onychiurus arcticus (Tullberg). Journal of Insect Physiology 44: 211-219.zh_TW
dc.description.abstract紅胸隱翅蟲(Paederus fuscipes Curtis)廣泛分佈於熱帶至溫帶地區,其體液中所含毒素為隱翅蟲皮膚炎之致病因子。由於紅胸隱翅蟲適應各種生物地理區域,因此對於應對乾燥脅迫的能力至關重要。為了探討紅胸隱翅蟲在乾燥情況下生存的抗旱策略,我們測定了紅胸隱翅蟲成蟲的水分生理以及減少乾燥壓力的策略。本研究涵蓋以下三項因子:年齡,性別和交配狀況之成蟲面臨乾燥脅迫下的比較。為了減少乾燥脅迫,一日齡成蟲,具有較高水含量使其對於水分損失具有較高耐受性(雌蟲:41.67±2.04%,雄蟲:57.38±5.12%)。該結果也同時說明紅胸隱翅蟲具有性別上的生理差異特性,相較於雄性,雌性具有較高的含水量(雌蟲:82.01±1.84%,雄蟲:69.39±2.25%),在到達死亡臨界點之前能容忍更多的水損失,因此在面臨乾燥脅迫下具有較佳的存活率。但依據本篇結果,對於表皮滲透性及失水率,配對或沒有配對的成蟲並無顯著差異。而能量代謝物方面,一日齡新生的紅胸隱翅蟲具有高海藻糖濃度以忍受乾燥狀態;六週齡以及六週齡後的老齡成蟲降低表皮滲透性,並同步增加表皮脂質含量。儘管如此,葡萄糖和肝糖含量在大多數不同年齡成蟲都是十分重要的,經由增加水蒸氣吸收和代謝水來補償水分流失,相反,黑化對紅胸隱翅蟲的乾燥耐受性(黑化程度= 1)的影響並不顯著。綜合以上結果表明,紅胸隱翅蟲成蟲透過多種抗旱策略共同降低乾燥脅迫和增加失水耐受性來防止水分流失。zh_TW
dc.description.abstractRove beetle Paederus fuscipes Curtis (Coleoptera: Staphylinidae), the causative agent of dermatitis linearis, is reportedly to distribute from tropical to temperate regions. The capability of Paederus beetle to resist desiccation stress is vital to adapt to a wide range of biogeographic regions. To understand the strategies allowing these beetles to survive under dehydration situation, we examined the water relations of adult rove beetle and the mechanisms to reduce the stress of drying at different age, sex and mating status. In response to reduce desiccation stress, as for 1-day-old beetles, % TBW content was at an exceptionally high level (female: 82.01±1.84%, male: 69.39±2.25) and tolerated losing a high portion (female: 41.67±2.04%, male: 57.38±5.12) of their % TBW lost. This result also showed sex-specific trait indicated that females had better survivorship in response to desiccation stress compared to male as they had more water to lose before reaching the critical point upon mortality. In term of energy metabolite reserves, newly emerged beetles had high trehalose concentration to endure the desiccating state. Aged beetles of 6-week age and onwards reduced cuticular permeability, in which synchronous with increased cuticular lipid content. Nevertheless, glucose and glycogen content were crucial throughout most of adult life span to compensate the water loss via increased water vapor absorption and metabolic water. In contrast, the effect of melanization on the desiccation tolerance of beetles (melanization score = 1) was not significant. The results demonstrate that P. fuscipes adults prevent dehydration by employing multiple mechanisms that collectively reduce desiccation stress and increase dehydration tolerance.en_US
dc.description.tableofcontents摘要 i Abstract ii Table of Contents iv List of Tables v 1. Introduction 1 2. Materials and Methods 4 2.1 Insect sampling. 4 2.2 Rearing method. 4 2.3 Water relations 5 2.4 Cuticular lipid content 6 2.5 Body Melanization 6 2.6 Bioassay of energy metabolite reserve 7 2.7 Statistical Analysis. 7 3. Results 9 3.1 Age groups 9 3.2 Sex 10 3.3 Mating status 11 4. Discussion 12 5. References 20zh_TW
dc.subjectPaederus fuscipesen_US
dc.subjectdesiccation toleranceen_US
dc.subjectcuticular lipid contenten_US
dc.subjectenergy metabolite reservesen_US
dc.titleAdult Paederus beetle overcomes water loss with increased total body water content, energy metabolite storage, and reduced cuticular permeability: Age, sex-specific and mating status desiccation related traitsen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:昆蟲學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105036007-1.pdf746.4 kBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.