Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorYu-Ren Chenen_US
dc.identifier.citation[1] E. D. Daniel, C. D. Mee, M. H. Clark, 'Magnetic Recording: The First 100 Years, ' (New York: IEEE Press), (1998). [2] A.Moser et al., 'Magnetic recording: advancing into the future,' J. Phys. D. Appl. Phys., vol. 35, no. 19, pp. R157–R167, 2002. [3] R.Wood, 'Future hard disk drive systems,' J. Magn. Magn. Mater., vol. 321, no. 6, pp. 555–561, 2009. [4] B. D.Terris andT.Thomson, 'Nanofabricated and self-assembled magnetic structures as data storage media,' J. Phys. D. Appl. Phys., vol. 38, no. 12, pp. R199–R222, 2005. [5] M.Alex, A.Tselikov, T.McDaniel, N.Deeman, T.Valet, andD.Chen, 'Characteristics of thermally assisted magnetic recording,' IEEE Trans. Magn., vol. 37, no. 4 I, pp. 1244–1249, 2001. [6] S. H.Charap, Pu-Ling Lu, andYanjun He, 'Thermal stability of recorded information at high densities,' IEEE Trans. Magn., vol. 33, no. 1, pp. 978–983, 1997. [7] S.Iwasaki andK.Takemura, 'An analysis for the circular mode of magnetization in short wavelength recording,' IEEE Trans. Magn., vol. 11, no. 5, pp. 1173–1175, 1975. [8] 引用資料來源網址'' [9] D.Weller, O.Mosendz, G.Parker, S.Pisana, andT. S.Santos, 'L10 FePtX-Y media for heat-assisted magnetic recording,' Phys. Status Solidi Appl. Mater. Sci., vol. 210, no. 7, pp. 1245–1260, 2013. [10] Y.Shiroishi et al., 'Future options for HDD storage,' IEEE Trans. Magn., vol. 45, no. 10, pp. 3816–3822, 2009. [11] 引用資料來源網址' '. [12] 引用資料來源網址'' . [13] T.Rausch, E.Gage, andJ.Dykes, 'Heat assisted magnetic recording,' Springer Proc. Phys., vol. 159, no. 11, pp. 200–202, 2015. [14] J. S.Chen, B. C.Lim, J. F.Hu, Y. K.Lim, B.Liu, andG. M.Chow, 'High coercivity L 10 FePt films with perpendicular anisotropy deposited on glass substrate at reduced temperature,' Appl. Phys. Lett., vol. 90, no. 4, pp. 1–4, 2007. [15] K. F.Dong et al., 'Control of microstructure and magnetic properties of fept films with TiN intermediate layer,' IEEE Trans. Magn., vol. 49, no. 2, pp. 668–674, 2013. [16] K. F.Dong, F.Jin, W. Q.Mo, J. L.Song, andW. M.Cheng, 'Improvement of isolation and grain size of FePt-SiNx-C films with TiON intermediate layer,' J. Alloys Compd., vol. 662, pp. 138–142, 2016. [17] 金重勳、李景明、張慶瑞,'磁性技術手冊',中華民國磁性技術協會,(2002). [18] C.Law, '杜怡君、張毓娟、翁乙壬、蘇怡帆、陳世毓、梁哲銘、葉巧雯、吳信璋、卓育泯,'磁性基本特性及磁性材料應用',國立台灣大學化學系,' no. 1. [19] Soshin Chikazumi 著,張煦、李學養合譯,'磁性物理學.' . [20] B. D. Cullity, 'Introduction to magnetic materials, ' Ch7, Wesley (1972). . [21] D. E.Gray, 'American Institute of Physics Handbook,' Am. Inst. Phys. Handb., vol. 389, 1957. [22] Berkeley; andE. F.King, 'M. J. Clerk,'Atreatise on Electicity and magnetism,' Articles 437 and 438, vol.2, 1006 (1954),' Oxford Univ., vol. XXX, p. 352, 1859. [23] P. B. Barna, M. Adamik, 'Growth mechanisms of polycrystalline thin films, ' Science and technology of thin films, pp.4 (1995). [24] M. Ohring, 'Materials science of thin films, ' (2001). [25] M.Thesis, S.Substrate, D.Designs, andC.Chang, '張智文,'直流磁控濺鍍機之仿真系統及均勻度改善探討',國立中山大學,(2012),' no. July, 2012. [26] 江政忠,'真空技術與應用',國家實驗研究院儀器科技研究中心,第十三章,(2001). [27] 王怡婷、張豐志,'超疏水表面之製備及其學理研究',國立交通大學,(2006). [28] B.Marchon et al., 'Head – Disk Interface Materials Issues in Heat-Assisted Magnetic Recording,' vol. 50, no. 3, 2014. [29] H. W.Hugosson, O.Eriksson, U.Jansson, A.V.Ruban, P.Souvatzis, andI. A.Abrikosov, 'Surface energies and work functions of the transition metal carbides,' Surf. Sci., vol. 557, no. 1–3, pp. 243–254, 2004. [30] T. J.Zhou, K. M.Cher, J. F.Hu, B. C.Lim, P. W.Lwin, andJ. Z.Shi, 'T. J. Zhou, K. M. Cher, J. F. Hu, B. C. Lim, P. W. Lwin, J. Z. Shi,'Enhanced exchange coupling in TiO -doped FePt-C nanocomposite thin films induced by surfactant mediated growth,' IEEE Transactions on Magnetics, vol.47(10), pp.3300-3303 (2011),' Magn. IEEE Trans., vol. 47, no. 10, pp. 3300–3303, 2011. [31] D.Goll andT.Bublat, 'Large-area hard magnetic L10-FePt and composite L1 0-FePt based nanopatterns,' Phys. Status Solidi Appl. Mater. Sci., vol. 210, no. 7, pp. 1261–1271, 2013. [32] U.Kawald, W.Zemke, H.Bach, J.Pelzl, andG. A.Saunders, 'Elastic constants and martensitic phase transitions in FePt and FeNiPt invar alloys,' Phys. B Phys. Condens. Matter, vol. 161, no. 1–3, pp. 72–74, 1989. [33] 許仁華, and 孫安正. '奈米儲存發展與前景. ' 物理雙月刊 30.2 (2008): pp. 152-159. [34] B. Warren, 'X-ray Diffraction, ' Dover, New York, pp.227, (1990). [35] J. S.Chen, B. C.Lim, andT. J.Zhou, 'Effect of ultrahigh vacuum on ordering temperature, crystallographic and magnetic properties of L1(0) FePt(001) film on a CrRu underlayer,' J. Vac. Sci. Technol. A, vol. 23, no. 1, pp. 184–189, 2005. [36] E.Yang, D. E.Laughlin, andJ. G.Zhu, 'Correction of order parameter calculations for FePt perpendicular thin films,' IEEE Trans. Magn., vol. 48, no. 1, pp. 7–12, 2012. [37] H. W.Hugosson et al., 'Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric molybdenum carbide,' J. Appl. Phys., vol. 86, no. 1999, pp. 3758–3767, 1999. [38] Y.Liu, Y.Jiang, J.Feng, andR.Zhou, 'Elasticity, electronic properties and hardness of MoC investigated by first principles calculations,' Phys. B Condens. Matter, vol. 419, pp. 45–50, 2013. [39] Y. K.Takahashi, K.Hono, T.Shima, andK.Takanashi, 'Microstructure and magnetic properties of FePt thin films epitaxially grown on MgO (0 0 1) substrates,' J. Magn. Magn. Mater., vol. 267, no. 2, pp. 248–255, 2003. [40] B. S. D. C. S.Varaprasad, Y. K.Takahashi, A.Ajan, andK.Hono, 'Electrically conductive (Mg0.2Ti0.8)O underlayer to grow FePt-based perpendicular recording media on glass substrates,' J. Appl. Phys., vol. 113, no. 20, pp. 1–6, 2013. [41] Y.Xu, J. S.Chen, and J. P.Wang, 'In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100-xRux underlayer at low substrate temperature,' Appl. Phys. Lett., vol. 80, no. 18, pp. 3325–3327, 2002. [42] Y. C.Feng, D. E.Laughlin, andD. N.Lambeth, 'Formation of crystallographic texture in rf sputter-deposited Cr thin films,' J. Appl. Phys., vol. 76, no. 11, pp. 7311–7316, 1994. [43] H.Li, K.Dong, Y.Peng, G.Ju, G. M.Chow, andJ. S.Chen, 'Microstructures and magnetic properties of FePt thin films on TiON intermediate layer,' IEEE Trans. Magn., vol. 50, no. 3, pp. 89–95, 2014. [44] J. S.Chen, B. C.Lim, Y. F.Ding, andG. M.Chow, 'Low-temperature deposition of L10 FePt films for ultra-high density magnetic recording,' J. Magn. Magn. Mater., vol. 303, no. 2 SPEC. ISS., pp. 309–317, 2006. [45] T.Shima, K.Takanashi, Y. K.Takahashi, and K.Hono, 'Formation of octahedral FePt nanoparticles by alternate deposition of FePt and MgO,' Appl. Phys. Lett., vol. 88, no. 6, pp. 1–4, 2006. [46] J. Y.Deng et al., 'Effect of TiON-MgO intermediate layer on microstructure and magnetic properties of L10 FePt-C-SiO2 films,' J. Magn. Magn. Mater., vol. 417, pp. 203–207, 2016. [47] 引用資料來源網址'' [48] 引用資料來源網址'' [49] 圖片來源'國立中興大學奈米中心.' [50] 圖片來源'國立中興大學材料系公用儀器.' [51] C.Rontgen, H.Bragg, L.Bragg, andM.Laue,引用資料來源網址',' pp. 17–35, 1913. [52] 圖片來源'國立中正大學物理系張文成老師實驗室.' [53] 圖片來源'國立交通大學電物系貴重儀器.' [54] B. D. Cullity, C. D. Graham, 'Introduction to Magnetic Materials, ' second edition, 2.11.2 , pp.68 (2009). [55] 圖片來源' ' [56] 引用資料來源網址',' pp. 1–10, 1973. [57] 圖片來源''. [58] 圖片來源'國立中興大學材料系貴重儀器.' [59] 引用資料來源網址'' [60] S.Chemical andA.Techniques,張立信。'表面化學分析技術'。奈米通訊。19卷 4。第17-23頁。, no. 4, pp. 17–23. [61] D. B.Williams andC. B.Carter, 'The Transmission Electron Microscope,' Transm. Electron Microsc., pp. 3–17, 1996.zh_TW
dc.description.abstract本實驗主要分兩大部分,第一部分為利用BN-Ag-C分隔材料以及不同氮含量(原子百分比)之MgTiON中間層對於FePt的變化進行探討。第二部分則使用Mg(Ti,Ta,Zr,Nb,B)O合金靶材,以兩種不同的製備方法,將此金屬氧化物以中間層以及多層膜方式製備,探討對於FePt之磁性以及微結構的影響。 第一部分實驗中使用MgTiON(5 at%)作為中間層時,添加BN-Ag-C分隔材料會讓鐵白金晶粒改變成接觸角大於90度的球狀結構,並且擁有較高的垂直矯頑力表現,另外將3奈米的MoC沉積在MgTiON(5 at%)上時,鐵白金之晶粒呈現接觸角約47度的島狀結構,而垂直矯頑力有些微下降;使用MgTiON(15 at%)作為中間層時,由於介面能之改變,未添加BN-Ag-C分隔材料時鐵白金之晶粒呈現島狀結構且擁有最高之垂直矯頑力,而添加BN-Ag-C分隔材料後,鐵白金之晶粒形成長方及方形結構,其接觸角接近90度,最後將3奈米的MoC沉積在MgTiON(5 at%)上時,垂直矯頑力大幅下降且鐵白金形成雙層結構。 第二部分實驗中使用Mg(Ti,Ta,Zr,Nb,B)O作為中間層時,FePt薄膜呈現優先垂直各向異性,然而矯頑力低於參考FePt薄膜,可能是因為金屬元素從分隔中間層擴散到FePt顆粒中,而將Mg(Ti,Ta,Zr,Nb,B)O作為多層膜製備時,雖然有更低的垂直矯頑力,但其水平矯頑力較小且獲得具有更好的(001)晶體結構和與緻密圓頂形狀的FePt,更接近預期的柱狀晶粒結構,而在此部分提出了不同的製備方法得到不同形狀支鐵白金,這是未來可以應用及努力的方向。zh_TW
dc.description.abstractIn the first part, the microstructure and magnetic properties of FePt(BN, Ag, C) granular films grown on MgTiON intermediate layer with and without MoC inserting layer were studied. The FePt(BN, Ag, C) films show perpendicular magnetization and the highest out-of-plane coercivity was 15.8 kOe prepared on MgTiON(15at%) intermediate layer. In this sample, the FePt grains show square and rectangular islands with round corner and the contact angle was around 90o. The MoC with thickness of 3nm was capped on MgTiON(15at%) to compare the FePt grains morphology. The out-of-plane coercivity of 10nm thick FePt was down to 8.27kOe. The trapezoidal FePt islands with low contact angle (~47o) were always observed when FePt film prepared on MoC(3nm)/MgTiON and some small FePt grains were observed on trapezoidal islands. The second nucleated FePt grains were deteriorated the orientation, and out-of-plane coercivity. With the same segregants (BN, Ag, C), the FePt grains morphology and contact angle were changed due to varied interface energy and the FePt grains were more de-wetted on MgTiON than on MoC surface. The FePt film with (BN, Ag, C) segregants was suitable to prepare on MgTiON intermediate layer to have higher out-of-plane coercivity and columnar grains morphology. In the second part, magnetic and microstructural properties of granular FePt films mixed with a novel Mg(Ti, Ta, Zr, Nb, B)O multiple-oxide segregant material were investigated. Two different series of samples were prepared. In series (I), a Mg(Ti, Ta, Zr, Nb, B)O(t) (t = 2, 4, 6 nm) interlayer was deposited under a 10 nm thick FePt layer; in series (II), FePt(2nm)/[Mg(Ti, Ta, Zr, Nb, B)O(t nm)/FePt(4nm)]2 (t=0.5, 1, 1.5) multilayer stacks consisting of FePt films interleaved with Mg(Ti, Ta, Zr, Nb, B)O layers were prepared. Overall, the granular FePt films present a preferential perpendicular anisotropy, the coercivity being however lower than that of the reference FePt films, likely because of diffusion of metallic elements from the segregant interlayer into the FePt grains. Such an effect is more extended in sample series (II) because of the multilayer structure and lower coercivity values are achieved. However, using a multilayer stack allows obtaining FePt films with a better (001) crystallographic texture and a dense dome-like morphology that is closed to the expected columnar grains structure; thus, indicating that such a strategy and the proposed segregant material are of potential interest for the development of the FePt-based magnetic recording media.en_US
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii 目錄 v 表目錄 ix 圖目錄 x 符號說明 xiv 第一章 緒論 1 1-1 前言 1 1-2 硬式磁碟機的發展歷史與簡介 2 1-3 熱輔助磁紀錄媒體(HAMR) 5 1-4 背景及研究動機 8 第二章 基礎理論與文獻回顧 9 2-1理論基礎 9 2-1-1磁性材料 9 2-1-2磁異向性 10 2-1-3磁晶異向性 10 2-1-3-1立方晶體之磁晶異向性 11 2-1-3-2六方晶體之磁晶異向性 13 2-1-4薄膜成長機制 14 2-1-4-1薄膜沉積階段 14 2-1-4-2薄膜成長方式 16 2-1-4-3薄膜成長模式與基板的影響 17 2-1-5濺鍍原理 18 2-1-5-1直流濺鍍原理 19 2-1-6表面能與接觸角關係 20 2-2材料的晶體結構 23 2-2-1 FePt合金結構與磁性 23 2-2-2序化與非序化 25 2-2-3 序化度(S)計算 27 2-2-4 MoC化合物結構 32 2-2-5 MgTiON氧化物結構 33 2-2-6 CrRu合金結構 34 2-3文獻回顧 35 2-3-1 CrRu薄膜晶種層之文獻回顧 35 2-3-2 MgTiON薄膜中間層之文獻回顧 39 第三章 實驗流程與儀器原理 43 3-1 實驗流程 43 3-2 靶材選擇 44 3-3 基板選用和清洗 44 3-4 薄膜濺鍍系統與樣品製備 46 3-4-1 磁控濺鍍系統 46 3-4-2 薄膜製備步驟 48 3-4-3 膜層厚度樣品製備 49 3-4-4 穿透式電子顯微鏡樣品製備 49 3-5 設備介紹與分析方法 50 3-5-1 膜層厚度量測及表面粗糙度分析 50 3-5-2 晶體結構分析 52 3-5-3 磁性分析 55 3-5-4 樣品成分分析 57 3-5-5 樣品打薄 58 3-5-6 樣品橫截面 59 3-5-7 微結構分析 60 3-5-7-1 穿透式電子顯微鏡原理 60 3-5-7-2 選區繞射之晶面計算 61 3-5-8 溫度校正 62 第四章 結果與討論 63 4-1 FePt共鍍BN,Ag,C分隔材料在MgTiON中間層之實驗成果探討 64 4-1-1 BN,Ag,C分隔材料在MgTiON(5 at%)之XRD分析 65 4-1-2 BN,Ag,C分隔材料在MgTiON(5 at%)之SQUID分析 66 4-1-3 BN,Ag,C分隔材料在MgTiON(5 at%)之TEM分析 67 4-1-4 BN,Ag,C分隔材料在MgTiON(5 at%)之AFM分析 70 4-1-5 BN,Ag,C分隔材料在MgTiON(15 at%)之XRD分析 71 4-1-6 BN,Ag,C分隔材料在MgTiON(15 at%)之SQUID分析 72 4-1-7 BN,Ag,C分隔材料在MgTiON(15 at%)之TEM分析 73 4-1-8 BN,Ag,C分隔材料在MgTiON(15 at%)之AFM分析 76 4-2 Mg(Ti,Ta,Zr,Nb,B)O金屬氧化物作為中間層及多層膜之實驗成果探討 77 4-2-1 改變Mg(Ti,Ta,Zr,Nb,B)O中間層膜厚之XRD分析 78 4-2-2 改變Mg(Ti,Ta,Zr,Nb,B)O中間層膜厚之SQUID分析 79 4-2-3 改變Mg(Ti,Ta,Zr,Nb,B)O中間層膜厚之AFM分析 80 4-2-4改變Mg(Ti,Ta,Zr,Nb,B)O多層膜膜厚之XRD分析 81 4-2-5改變Mg(Ti,Ta,Zr,Nb,B)O多層膜膜厚之搖擺曲線分析 82 4-2-6改變Mg(Ti,Ta,Zr,Nb,B)O多層膜膜厚之SQUID分析 83 4-2-7改變Mg(Ti,Ta,Zr,Nb,B)O多層膜膜厚之AFM分析 84 4-2-8 Mg(Ti,Ta,Zr,Nb,B)O作為中間層以及多層膜膜厚之TEM分析 85 4-2-9 Mg(Ti,Ta,Zr,Nb,B)O薄膜之XPS元素價態分析 87 第五章 結論 89 參考文獻 90zh_TW
dc.titleMagnetic properties and microstructure of FePt-(BN,Ag,C) and [FePt-Mg(Ti,Ta,Zr,Nb,B)O] granular filmsen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:材料科學與工程學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066019-1.pdf6.52 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.