Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97928
標題: 以電漿電解氧化法於鈦箔製備氮摻雜銳鈦礦相二氧化鈦膜及其應用於可見光光觸媒之研究
Synthesis of N-doped anatase TiO2 coatings on titanium foils by plasma electrolytic oxidation for visible light photocatalytic applications
作者: 林冠維
Guan-Wei Lin
關鍵字: 電漿電解氧化法;六偏磷酸鈉;氨水;鈦箔;氮化鈦;Plasma electrolyte oxidation;Sodium hexametaphosphate;Ammonia solution;Titanium foil;Titanium nitride
引用: [1]K. Honda, A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38. [2]M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96. [3]N. Rahimi, R.A. Pax, E.M. Gray, Review of functional titanium oxides. I: TiO2 and its modifications, Prog. Solid State Chem. 44 (2016) 86-105. [4]A.L. Linsebigler, G.Q. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758. [5]T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films, Sci. Rep., 4 (2014) 4023. [6]M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh, How photocatalytic activity of the MAO-grown TiO2 nano/micro-porous films is influenced by growth parameters?, Appl. Surf. Sci. 256 (2010) 4253-4259. [7]J. He, Q.Z. Cai, Y.G. Ji, H.H. Luo, D.J. Li, B. Yu, Influence of fluorine on the structure and photocatalytic activity of TiO2 film prepared in tungstate-electrolyte via micro-arc oxidation, J. Alloys. Compd. 482 (2009) 476-481. [8]L.K. Mirelman, J.A. Curran, T.W. Clyne, The production of anatase-rich photoactive coatings by plasma electrolytic oxidation, Surf. Coat. Technol. 207 (2012) 66-71. [9]N. Xiang, R.G. Song, B. Xiang, H. Li, Z.X. Wang, C. Wang, A study on photocatalytic activity of micro-arc oxidation TiO2 films and Ag+/MAO-TiO2 composite films, Appl. Surf. Sci. 347 (2015) 454-460. [10]S.-Y. Wu, Y.-H. Chen, K.-C. Chen, J.-L. He, Using micro-arc oxidation and alkali etching to produce a nanoporous TiO2 layer on titanium foil for flexible dye-sensitized solar cell application, Jpn. J. Appl. Phys. 49 (2010) 092301. [11]N. Salami, M.R. Bayati, F. Golestani-Fard, H.R. Zargar, UV and visible photodecomposition of organic pollutants over micro arc oxidized Ag-activated TiO2 nanocrystalline layers, Mater. Res. Bull. 47 (2012) 1080-1088. [12]F. Shahidi, J. Synowiecki, Protein hydrolyzates from seal meat as phosphate alternatives in food processing applications, Food Chem. 60 (1997) 29-32. [13]R.S.Lanigan, Final report on the safety assessment of sodium metaphosphate, sodium trimetaphosphate, and sodium hexametaphosphate, Int. J. Toxicol. 20 (2001) 75-89. [14]陳家雙,以電漿電解氧化法於鈦箔製備二氧化鈦膜之研究,國立中興大學材料科學與工程學系碩士論文,(2017)。 [15]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 13 (2001) 269-271. [16]S.-R. Woo, Y.-M. Sung, Enhanced photoelectrochemical water splitting of micro-arc oxidized TiO2 via anatase/rutile phase control and nitrogen doping, J. Electrochem. Soc. 163(5) (2016) 278-285. [17]S. Sridhar, A. Viswanathan, K. Venkateswarlu, N. Rameshbabu, N.L. Parthasarathi, Enhanced visible light photocatalytic activity of P-block elements (C, N and F) doped porous TiO2 coatings on Cp-Ti by micro-arc oxidation, J. Porous Mater. 22 (2015) 545-557. [18]J.-W. Choi, S.-E. Lee, B.-G. Lee, Y.-S. Jeong, H.-J. Oh, C.-S. Chi, Purifying behavior of photocatalytic TiO2 anodized in nitrate ion containing solution, Trans. Nonferrous Met. Soc. China 19 (2009) 1027–1030. [19]H.-J. Song, M.-K. Kim, G.-C. Jung, M.-S. Vang, Y.-J. Park, The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics, Surf. Coat. Technol. 201 (2007) 8738-8745. [20]H.Z. Abdullah, P. Koshy, C.C. Sorrell, Anodic oxidation of titanium in mixture of β-Glycerophosphate (β-GP) and calcium acetate (CA), Key. Eng. Mater. 594-595 (2013) 275-280. [21]L. Wang, L. Chen, Z. Yan, W. Fu, Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes, Surf. Coat. Technol. 205 (2010) 1651-1658. [22]T. Mi, B. Jiang, Z. Liu, L. Fan, Plasma formation mechanism of micro arc oxidation, Electrochim. Acta 123 (2014) 369-377. [23]E.V. Parfenov, A. Yerokhin, R.R. Nevyantseva, M.V. Gorbatkov, C.J. Liang, A. Matthews, Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling, Surf. Coat. Technol. 269 (2015) 2-22. [24]M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J.Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for enviro-mental applications, Appl. Catal., B 125 (2012) 331-349. [25]Y. Kakuma, A.Y. Nosaka, Y. Nosaka, Difference in TiO2 photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water, Phys. Chem. Chem. Phys. 17 (2015) 18691-18698. [26]O.Carp, C.L.Huisman, A.Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33-177. [27]K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol., C 13 (2012) 169-189. [28]T. Lindgren, J.M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C.G. Granqvist, S.E. Lindquist, Photoelectrochemical and optical properties of nitrogen doped Titanium dioxide films prepared by reactive DC magnetron sputtering, J. Phys. Chem. 107 (2003) 5709-5716. [29]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 13 (2001) 269-271. [30]S.A. Ansari, M.M. Khan, M.O. Ansari, M.H. Cho, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis, New J. Chem. 40 (2016) 3000-3009. [31]Y.-K. Pan, C.-Z. Chen, D.-G. Wang, T.-G. Zhao, Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg–Zn–Zr magnesium alloy, Colloid Surf. B-Biointerfaces 109 (2013) 1-9. [32]H. Ma, D. Li, C. Liu, Z. Huang, D. He, Q. Yan, P. Liu, P. Nash, D. Shen, An investigation of (NaPO3)6 effects and mechanisms during micro-arc oxidation of AZ31 magnesium alloy, Surf. Coat. Technol. 266 (2015) 151-159. [33]Y. Jiang, J. Wang, B. Hu, Z. Yao, Q. Xia, Z. Jiang, Preparation of a novel yellow ceramic coating on Ti alloys by plasma electrolytic oxidation, Surf. Coat. Technol. 307 (2016) 1297-1302. [34]W.-C. Gu, G.-H. Lv, H. Chen, G.-L. Chen, W.-R. Feng, G.-L. Zhang, S.-Z. Yang, Investigation of morphology and composition of plasma electrolytic oxidation coatings in systems of Na2SiO3–NaOH and (NaPO3)6–NaOH, J. Mater. Process. Technol. 182 (2007) 28-33. [35]S. Ji, Y. Weng, Z. Wu, Z. Ma, X. Tian, R.K.Y. Fu, H. Lin, G. Wu, P.K. Chu, F. Pan, Excellent corrosion resistance of P and Fe modified micro-arc oxidation coating on Al alloy, J. Alloys. Compd. 710 (2017) 452-459. [36]Q.-P. Tran, J.-K. Sun, Y.-C. Kuo, C.-Y. Tseng, J.-L. He, T.-S. Chin, Anomalous layer-thickening during micro-arc oxidation of 6061 Al alloy, J. Alloys Compd. 697 (2017) 326-332. [37]R.F. Zhang, Film formation in the second step of micro-arc oxidation on magnesium alloys, Corros. Sci. 52 (2010) 1285-1290. [38]D.-Y. Kim, M. Kim, H.-E. Kim, Y.-H. Koh, H.-W. Kim, J.-H. Jang, Formation of hydroxyapatite within porous TiO2 layer by micro-arc oxidation coupled with electrophoretic deposition, Acta Biomater. 5 (2009) 2196-2205. [39]R. Arrabal, E. Matykina, P. Skeldon, G.E. Thompson, A. Pardo, Transport of species during plasma electrolytic oxidation of WE43-T6 Magnesium Alloy, J. Electrochem. Soc. 155 (2008) 101-111. [40]L. Wan, J.-F. Li, J.-Y. Feng, W. Sun, Z.-Q. Mao, Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation, Mater. Sci. Eng., B 139 (2007) 216-220. [41]X.-D. Jiang, Y.-Q. Wang, C.-X. Pan, High concentration substitutional N-doped TiO2 film: preparation, characterization, and photocatalytic property, J. Am. Ceram. Soc. 94 (2011) 4078-4083. [42]J.-H. Lee, J.-I. Youn, Y.-J. Kim, I.-K. Kim, K.-W. Jang, H.-J. Oh, Photocatalytic characteristics of boron and nitrogen doped titania film synthesized by micro-arc oxidation, Ceram. Int. 41 (2015) 11899-11907. [43]S. Sridhar, T. Arunnellaiappan, N. Rameshbabu, S. Mika, A. Viswanathan, Solar photocatalytic activity of nitrogen doped TiO2 coating by micro-arc oxidation, Surf. Eng. 33 (2016) 779-786. [44]A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol. 122 (1999) 73-93. [45]Powder Diffraction File. PDF-2 CDROM, International Center for Diffraction Data, Newtown Square, PA 2000. [46]Y.-l. Cheng, X.-Q. Wu, Z.-G. Xue, E. Matykina, P. Skeldon, G.E. Thompson, Microstructure, corrosion and wear performance of plasma electrolytic oxidation coatings formed on Ti–6Al–4V alloy in silicate-hexametaphosphate electrolyte, Surf. Coat. Technol. 217 (2013) 129. [47]F.C. Walsh, C.T.J. Low, R.J.K. Wood, K.T. Stevens, J. Archer, A.R. Poeton, A. Ryder, Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys, Trans. Inst. Met. Finish. 87(3) (2013) 122-135. [48]E. Matykina, A. Berkani, P. Skeldon, G.E. Thompson, Real-time imaging of coating growth during plasma electrolytic oxidation of titanium, Electrochim. Acta 53 (2007) 1987-1994. [49]H. Wang, F. Liu, X. Xiong, S. Ke, X. Zeng, P. Lin, Structure, corrosion resistance and in vitro bioactivity of Ca and P containing TiO2 coating fabricated on NiTi alloy by plasma electrolytic oxidation, Appl. Surf. Sci. 356 (2015) 1234-1243. [50]M.R. Bayati, F. Golestani-Farda, A.Z. Moshfeghc, Visible photodecomposition of methylene blue over micro arc oxidized WO3–loaded TiO2 nano-porous layers, Appl. Catal., A 382 (2010) 322-331. [51]P. Huang, F. Wang, K. Xu, Y. Han, Mechanical properties of titania prepared by plasma electrolytic oxidation at different voltages, Surf. Coat. Technol. 201 (2007) 5168-5171. [52]C.-S.Chi, J. Choi, Y. Jeong, O.Y. Lee, H.-J. Oh, Nitrogen and europium doped TiO2 anodized films with applications in photocatalysis, Thin Solid Films 519 (2011) 4676-4680. [53]M. Yurddaskal, T. Dikici, S. Yildirim, M. Yurddaskal, M. Toparli, E. Celik, Fabrication and characterization of nanostructured anatase TiO2 films prepared by electrochemical anodization and their photocatalytic properties, J. Alloys Compd. 651 (2015) 59-71. [54]J. Sun, Y. Han, K. Cui, Microstructure and apatite-forming ability of the MAO-treated porous titanium, Surf. Coat. Technol. 202 (2008) 4248–4256. [55]F. Golestani-Fard, M.R. Bayati, H.R. Zargar, S. Abbasi, H.R. Rezaei, MAO-preparation of nanocrystalline hydroxyapatite–titania composite films: Formation stages and effect of the growth time, Mater. Res. Bull. 46 (2011) 2422-2426. [56]J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. BomBen, J. Chastain, Handbook of X-ray photoelectron spectroscopy: A reference book of standard spectra for identification and interpretation of XPS data, Physical Electronics Division, Perkin-Elmer Corporation, 1992, p. 252. [57]R.P. Antony, T. Mathews, P.K. Ajikumar, D.N. Krishna, S. Dash, A.K. Tyagi, Electrochemically synthesized visible light absorbing vertically aligned N-doped TiO2 nanotube array films, Mater. Res. Bull. 47 (2012) 4491-4497. [58]X. Sun, Z. Jiang, Z. Yao, X. Zhang, The effects of anodic and cathodic processes on the characteristics of ceramic coatings formed on titanium alloy through the MAO coating technology, Appl. Surf. Sci. 252 (2005) 441-447. [59]M. Shokouhfar, C. Dehghanian, M. Montazeri, A. Baradaran, Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: part II, Appl. Surf. Sci. 258 (2012) 2416-2423. [60]H.-P. Teng, H.-W. Hsu, F.-H. Lu, Formation of BaxSr1-xTiO3 films on TiN-coated substrates by plasma electrolytic oxidation, Ceram. Int. 43 (2017) 584-590. [61]A.H. Mamaghani, F. Haghighat, C.-S. Lee, Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art, Appl. Catal., B 203 (2017) 247-269.
摘要: 
本研究以電漿電解氧化法,使用0~0.04 M六偏磷酸鈉與0.13 M氫氧化鈉作為電解液,反應電壓200~400 V,電流頻率980 Hz,佔空比10%,反應10分鐘,於鈦箔基材製備銳鈦礦相二氧化鈦膜,探討生成膜層的性質與光催化效果;另外以鈦箔及氮化鈦/鈦箔作為反應基材,分別使用0.02 M與0.04 M六偏磷酸鈉電解液並添加0~1.3 M氨水,反應電壓350 V,電流頻率980 Hz,佔空比10%,反應10分鐘,製備出氮摻雜銳鈦礦相二氧化鈦膜,探討電解液中氨水對膜層性質的影響以及比較兩種基材製備膜層的差異,並且評估可見光光觸媒的應用。
以鈦箔作為基材,使用六偏磷酸鈉電解液時,六偏磷酸鈉的解離消耗額外的能量以抑制金紅石相的生成,因此產生純銳鈦礦相二氧化鈦膜並形成非晶相的磷酸鈦,膜層具有較大的表面孔洞以及較高的比表面積。加入較多的六偏磷酸鈉時,過多的磷酸根離子抑制了二氧化鈦的生成使銳鈦礦相對強度下降,因此使用適當濃度的六偏磷酸鈉電解液,可生成較高含量的銳鈦礦相以及比表面積的膜層以提升光催化效果。
以鈦箔作為基材,於0.02 M六偏磷酸鈉電解液中添加氨水,可製備出氮摻雜銳鈦礦相二氧化鈦膜,隨著氨水的濃度上升,膜層的銳鈦礦相對強度、表面孔洞大小、孔隙率及能隙皆減少;氮化鈦/鈦箔作為基材時,以0.04 M六偏磷酸鈉電解液可製備氮摻雜銳鈦礦相二氧化鈦膜,電解液中添加氨水可提升膜層中氮含量,相較於鈦箔,氮化鈦/鈦箔製備的膜層有較高的銳鈦礦相對強度與比表面積。
使用鈦箔為基材,隨著電解液中添加氨水,膜層的銳鈦礦相對強度、孔隙率以及氮含量同時影響光催化效率;以氮化鈦/鈦箔作為基材時,膜層的氮摻雜含量與孔隙率對光催化效率的影響較大。以氮化鈦/鈦箔作為基材時,由於膜層的氮摻雜含量、銳鈦礦相對強度以及比表面積較高,因此其光催化效果優於鈦箔基材,以0.04 M六偏磷酸鈉電解液加入0.13 M氨水,反應電壓350 V,電流頻率980 Hz,佔空比10%,反應10分鐘,其生成膜之光催化效果最佳。

In this research, pure anatase phase titanium dioxide (TiO2) coatings were produced by plasma electrolyte oxidation (PEO) on Ti foil substrate with the electrolytes consisting of 0.13 M sodium hydroxide (NaOH) and 0-0.04 M sodium hexametaphosphate (NaPO3)6 by applying a pulsed power supply in the range of 200 V-400 V, fixed the current frequency, duty cycle and reaction time was 980 Hz, 10% and 10 minutes. We discuss effect of (NaPO3)6 on properties of coating. Furthermore, nitrogen doped anatase TiO2 coatings were produced on Ti foil and TiN/Ti foil with the electrolytes consisted of 0.02-0.04 M (NaPO3)6, 0.13 M NaOH and 0-1.3 M ammonia solution (NH4OH), fixed the voltage, current frequency, duty cycle and reaction time was 350 V, 980 Hz, 10% and 10 minutes. Influences of ammonia solution in the electrolytes on properties and photocatalytic activity of coatings were explored and compared the difference between Ti foil and TiN/Ti foil.
When adding (NaPO3)6 in the NaOH electrolytes, the dissociation of (NaPO3)6 in the electrolytes consumes energies supplied from PEO and retards the transformation of rutile TiO2. Crystalline structures of the coatings transform from mixed rutile and anatase phases into a pure anatase phase and amorphous titanium phosphate was also formed, pore sizes and surface specific areas of coatings were also enhanced. More (NaPO3)6 in the electrolytes would yield more phosphous in the coatings and reduce the relative anatase contents. With the optimized (NaPO3)6 concentration in the electrolytes, the highest photocatalytic ability for the TiO2 coatings was achieved.
Nitrogen doped anatase TiO2 coatings could be produced on Ti foil with the 0.02 M (NaPO3)6 electrolytes adding NH4OH. With increasing the concentration of NH4OH in the electrolytes, relative intensity of anatase, pore size, porosity and band gap would decreased. Nitrogen doped anatase TiO2 coatings also could was produced on TiN/Ti foil with the electrolytes consisting of 0.04 M (NaPO3)6 and NH4OH. Compare to Ti foil, using TiN/Ti foil as substrates can produced higher specific surface areas and relative intensity of anatase of coatings.
Using Ti foil as substrates, the change of relative intensity of anatase, porosity and content of nitrogen influenced photocatalytic activities with adding NH4OH into the electrolytes. Using TiN/Ti foil as substrates, content of nitrogen and porosity of coatings were the primary factor of photocatalytic activities. Using TiN/Ti foil as substrates, photocatalytic activities of the coatings higher than Ti foil substrates due to higher relative intensity of anatase, specific surface areas and content of nitrogen. TiO2 coatings which produced on TiN/Ti foil with the electrolytes consisted of 0.04 M (NaPO3)6, 0.13 M NaOH and 0.13 M NH4OH by 350 V with a duty cycle of 10% and current frequency of 980 Hz for 10 min have greatest highest photocatalytic ability.
When adding (NaPO3)6 in the NaOH electrolytes, the dissociation of (NaPO3)6 in the electrolytes consumes energies supplied from PEO and retards the transformation of rutile TiO2. Crystalline structures of the coatings transform from mixed rutile and anatase phases into a pure anatase phase and amorphous titanium phosphate was also formed, pore sizes and surface specific areas of coatings were also enhanced. More (NaPO3)6 in the electrolytes would yield more phosphous in the coatings and reduce the relative anatase contents. With the optimized (NaPO3)6 concentration in the electrolytes, the highest photocatalytic ability for the TiO2 coatings was achieved.
Nitrogen doped anatase TiO2 coatings could be produced on Ti foil with the 0.02 M (NaPO3)6 electrolytes adding NH4OH. With increasing the concentration of NH4OH in the electrolytes, relative intensity of anatase, pore size, porosity and band gap would decreased. Nitrogen doped anatase TiO2 coatings also could was produced on TiN/Ti foil with the electrolytes consisting of 0.04 M (NaPO3)6 and NH4OH. Compare to Ti foil, using TiN/Ti foil as substrates can produced higher specific surface areas and relative intensity of anatase of coatings.
Photocatalytic activities of the coatings were increased with adding NH4OH into the electrolytes, but more NH4OH in the electrolytes would decrease due to the decreasing of relative intensity of anatase and porosity. Using TiN/Ti foil as substrates, photocatalytic activities of the coatings higher than Ti foil substrates due to higher relative intensity of anatase, specific surface areas and content of nitrogen. TiO2 coatings which produced on TiN/Ti foil with the electrolytes consisted of 0.04 M (NaPO3)6, 0.13 M NaOH and 0.13 M NH4OH by 350 V with a duty cycle of 10% and current frequency of 980 Hz for 10 min have greatest highest photocatalytic ability.
URI: http://hdl.handle.net/11455/97928
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-31起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066032-1.pdf6.84 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.