Please use this identifier to cite or link to this item:
標題: 叢生狀In2O3奈米線的室溫NO2氣體感測與環境濕度間之依存性探討
On the Humidity Dependence of Room-Temperature NO2 Gas-Sensing for Cluster-Patterned In2O3 Nanosensors
作者: 黃鼎宸
Din-Chen Huang
關鍵字: 氣體感測器;In2O3;濕度;Gas sensor;In2O3;Humidity
引用: 【1】化學品全球調和制度,'物質安全資料表(NO2)',勞動部職業安全衛生署。 【2】 L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti and T. J. Marks, 'High-performance transparent inorganic-organic hybrid thin-film n-type transistors', Nature Materials, 2006, 5, 11, 893-900. 【3】 X. Chen, CK. Y. Wong, CA. Yaun and G. Zhang, 'Nanowire-based gas sensors', Sensors and Actuators B:Chemical, 2013, 177, 91-100. 【4】 'ToxFAQsTM for nitrogen oxides', Agency for Toxic Substances and Disease Registry (ATSDR), Division of Toxicology ToxFAQsTM , 2002. 【5】 周瑞福,氣體感測器原理與應用,綠能與環境,2010, 77, 25-31. 【6】 Edaphic scientific environmental research & monitoring equipment, 'The semi-conductor gas sensing technique', /semiconductor-sensors/, 2018/07/31. 【7】 恆翼國際股份有限公司,各種傳感器的感測原理與優缺點,各種傳感器的感測原理與優缺點.pdf, 2018/07/31. 【8】 吉安達科技公司,'催化燃燒式傳感器工作原理',新聞動態,, 2018/07/31 【9】 陳金龍,'瓦斯感測器',工業電子學,, 2018/07/31. 【10】, '氣體感測器的種類、原理、特點和用途',, 2018/07/31. 【11】 普特企業有限公司,'MQ-2 煙霧氣體感測器模組液化氣/丙烷/氫氣',商業目錄,, 2018/07/31. 【12】 天基電子工業,'Dräger Polytron® 8700 IR 紅外線防爆型可燃氣體偵測器',商品型錄,, 2018/07/31. 【13】 高田科技股份有限公司,'可燃性氣體偵測器',商品介紹,, 2018/07/31. 【14】 煒盛科技,'C113C Catalytic Flammable Gas Sensor/C3H8 Sensor/Methane Gas Sensor',商品型錄,, 2018/07/31. 【15】 科安企業股份有限公司,'Yes Air八合一室內空氣品質監測器',商品型錄,, 2018/07/31. 【16】 T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, 'A new detector for gaseous components using semiconductive thin film', Analytical Chemistry, 1962, 34, 11, 1502-1503. 【17】 K. Yao, D. Caruntu, Z. Zeng, J. Chen, C. J. O'Connor and W. Zhou, 'Parts per billion-level H2S detection at room temperature based on self-assembled In2O3 nanoparticles', Journal of Physical Chemistry C, 2009, 113, 14812–14817. 【18】 S R. Morrison, 'Semiconductor gas sensors', Sensors and Actuators, 1982, 2, 329-341. 【19】 C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, 'Metal oxide gas sensors: sensitivity and influencing factors', Sensors, 2010, 10, 2088-2106, 【20】 S. Park, G. J. Sun, H. Kheel, T. Ko, H. W, Kim and C. Lee, 'Light-activated NO2 gas sensing of the networked CuO-decorated ZnS nanowire gas sensor', Applied Physics A, 2016, 122, 504. 【21】 H. Du, J. Wang, Y. Sun, P. Yao, X. Li and N. Yu, 'Investigation of gas sensing properties of SnO2/In2O3 composite hetero-nanofibers treated by oxygen plasma', Sensors and Actuators B: Chemical, 2015, 206, 753-763. 【22】 P. Rai, J. W. Yoon, C. H. Kwak and J. H. Lee, 'Role of Pd nanoparticles in gas sensing behavior of Pd@In2O3 yolk–shell nanoreactors', Journal of Materials Chemistry A, 2016, 4, 264-269. 【23】 V. V. Malyshev and A. V. Pislyakov, 'Sensitivity of semiconductor metal oxides (SnO2, WO3, ZnO) to hydrogen sulfide in dry and humid gas media', Journal of Analytical Chemistry, 2014, 69, 2, 213-135. 【24】 楊明輝,'金屬氧化物半導體的材料特性與Ga2O3的研發近況',2017, 材料世界網,, 2018/07/31. 【25】 T. O. Mason, G. B. Gonzalez, D. R. Kammler, N. M. Hadavi and B. J. Ingram, 'Defect chemistry and physical properties of transparent conducting oxides in the CdO-In2O3-SnO2 system', Thin solid films, 2002, 411, 106-114. 【26】 H. Zhang, Z. Li, L. Liu, C. Wang, Y. Wei and A. G. MacDiarmid, 'Mg2+/Na+-doped rutile TiO2 nanofiber mats for high-speed and anti-fogged humidity sensors', Talanta, 2009, 79, 953-958. 【27】 Z. Zhu, J. L. Chang, C. H. Wu, T. L. Chou and R. J. Wub, 'Promotion effect of silver on Indium(III) oxide for detecting trace amounts of ozone', Sensors and Actuators B: Chemical, 2016, 232, 442-447. 【28】 D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei and C. Zhou, 'Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices', Nano Letters, 2004, 4, 10, 1919-1924. 【29】 Y. G. Song, Y. S. Shim, S. Kim, S. D. Han, H. G. Moon, M. S. Noh, K. Lee, H. R. Lee, J. S. Kim, B. K. Ju and C. Y. Kang, 'Downsizing gas sensors based on semiconducting metal oxide: Effects of electrodes on gas sensing properties', Sensors and Actuators B: Chemical, 2017, 248, 949-956. 【30】 C. S. Rout, K. Ganesh, A Govindaraj and C. N. R. Rao, 'Sensors for the nitrogen oxides, NO2, NO andN2O, based on In2O3 and WO3 nanowires', Applied Physics A, 2006, 85, 241-246. 【31】 W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang, Z. Wang and Ce Wang, 'A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers', Sensors and Actuators B: Chemical, 2009, 142, 61-65. 【32】 A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, N. Poli and G. Sberveglieri, 'In2O3 nanowires for gas sensors: morphology and sensing characterization', Thin Solid Films, 2007, 515, 8356-8359. 【33】 Z. Zeng, K. Wang, Z. Zhang, J. Chen and W. Zhou, 'The detection of H2S at room temperature by using individual indium oxide nanowire transistors', Nanotechnology, 2009, 20, 045503, 1-4. 【34】 C. Cantalini, W. Wlodarski, H.T. Sun, M.Z. Atashbar, M. Passacantando, A. R. Phani and S. Santucci, 'Investigation on the cross sensitivity of NO2 sensors based on In2O3 thin films prepared by sol-gel and vacuum thermal evaporation', Thin Solid Films, 1999, 350, 276-282. 【35】 Y. Wang, G. Duan, Y. Zhu, H. Zhang, Z. Xu, Z. Dai and W. Cai, 'Room temperature H2S gas sensing properties of In2O3 micro/nanostructured porous thin film and hydrolyzation-inducedenhanced sensing mechanism', Sensors and Actuators B: Chemical, 2016, 228, 74-84. 【36】 Z, Zhu, J. L. Chang, C. H. Wu, T. L. Chou and Ren-Jang Wu, 'Promotion effect of silver on Indium(III) oxide for detecting trace amounts of ozone', Sensors and Actuators B: Chemical, 2016, 232, 442-447. 【37】 X. J. Yue, T. S. Hong, Z. Yang and S. P. HUANG, 'Room temperature H2S micro-sensors with anti-humidity properties fabricated from NiO-In2O3 composite nanofibers', Materials Science, 2013, 58, 7, 821-826. 【38】 P. Dwivedi, S. Dhanekar, S. Das and S. Chandra, 'Effect of TiO2 Functionalization on Nano-Porous Silicon for Selective Alcohol Sensing at Room Temperature', Journal of Materials Science & Technology, 2017, 33, 516-522. 【39】 Q. Qi, Y. C. Zou, M. H. Fan, Y. P. Liu, S. Gao, P. P. Wang, Y. He, D. J. Wang, G. D. Li, 'Trimethylamine sensors with enhanced anti-humidity ability fabricated from La0.7Sr0.3FeO3 coated In2O3–SnO2 composite nanofibers', Sensors and Actuators B: Chemical, 2014, 203, 111-117. 【40】 李翱翔,'珍珠狀氧化鎳奈米顆粒鑲嵌於氧化銦奈米冰柱應用於高濕度室溫氣體感測氣',中興大學材料科學與工程學系碩士論文,2015。 【41】 陳晢維,'改變In2O3單晶奈米線形貌對於NO2氣體感測特性影響之研究',中興大學材料科學與工程學系碩士論文,2016。 【42】 H. Du, P. J. Yao, Y. Sun, J. Wang, H. Wang and N. Yu, 'Electrospinning hetero-nanofibers In2O3/SnO2 of homotype heterojunction with high gas sensing activity', Sensors, 2017, 17, 1822, 1-15. 【43】 M. S. Lee, W. C. Choi, E. K. Kim, C. K. Kim and S. K. Min, 'Characterization of the oxidized indium thin films with thermal oxidation', Thin Solid Films, 1996, 279, 1-3. 【44】 L. Yao, K. Kan, Y. Lin, J. Song, J. Wang, J. Gao, P. Shen, L. Li and K. Shi, 'Si doped highly crystalline mesoporous In2O3 nanowires: synthesis, characterization and ultrahigh response to NOx at room temperature', RSC Advances, 2015, 5, 15515-15523. 【45】 N. Yamazoe, and N. Miura, 'Some basic aspects of semiconductor gas sensors', Chemical sensor technology, 1992, 4, 19-42. 【46】 S. W. Choi, A. Katoch, J. H. Kim, and S. S. Kim, 'Prominent reducing gas-sensing performances of n-SnO2 nanowires by local creation of p–n heterojunctions by functionalization with p-Cr2O3 nanoparticles', ACS Applied materials & Interface, 6, 17723-17729. 【47】 S. H. Wang, S. J. Chang, S. Liu, T. Y. Tsai and C. L. Hsu, 'Synthesis of In2O3 nanowires and their gas gensing properties', Ieee Sensors Journal, 2016, 16, 15, 1-6. 【48】 Z. M. Liao, K. J. Liu, J. M. Zhang, J. Xu and D. P. Yu, 'Effect of surface states on electron transport in individual ZnO nanowires', Physics Letters A, 2007, 367, 207-210. 【49】 B. Reynolds , 'Electronic transport properties of nanonstructured semiconductors: temperature dependence and size effects', Master thesis for University of Cincinnati, 2016. 【50】 M. E. Franke, T. J. Koplin, and U. Simon, 'Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter', Small, 2006, 1, 36-50. 【51】 S. Roso, C. Bittencourt, P. Umek, O. González, F. Güell, A. Urakawa and E. Llobet, 'Synthesis of single crystalline In2O3 octahedra for the selective detection of NO2 and H2 at trace levels', Journal of Materials Chemistry C, 2016, 4, 9418-9427. 【52】 G. Korotcenkov, V. Brinzari and B. K. Cho, 'In2O3- and SnO2-based thin film ozone sensors: fundamentals', Journal of Sensors, 2016, 2016, 31. 【53】 T. Doll, A. Fuchs, I. Eisele, G. Faglia, S. Groppelli and G. Sberveglieri, 'Conductivity and work function ozone sensors based on indium oxide', Sensors and Actuators B, 1998, 49, 63-67. 【54】 R. Xing, Q. Li, L. Xia, J. Song, L. Xu, J. Zhang, Y. Xie and H. Song, 'Au-modified three-dimensional In2O3 inverse opals: synthesis and improved performance for acetone sensing toward diagnosis of diabetes', Nanoscale, 2015, 7, 13051-13060. 【55】 A. U. Rehman, J. Zhang, J. Zhou, K. Kan, L. Li, K. Shi, 'Synthesis of mesoporous K2O-In2O3 nanowires and NOx gas sensitive performance study in room temperature', Microporous and Mesoporous Materials, 2017, 240, 50-56. 【56】 S. Min, J. Kim, C. Park, J. H. Jin, N. K. Min, 'Long-term stability of super-hydrophilic oxygen plasma-modified single-walled carbon nanotube network surfaces and the influence on ammonia gas detection', Applied Surface Science, 2017, 410, 105-110.
本研究以氣相傳輸法,在鍍金之指叉電極圖案矽晶片上成長叢生狀氧化銦(In2O3)奈米線,並探討其室溫NO2氣體感測性質與環境濕度間之依存性。在製備溫度900 oC持溫5 min時,藉由氧氣流速改變獲得不同形貌的In2O3奈米線,當氧流速低於5 sccm時,獲得表面光滑的In2O3尖錐型奈米線;當氧流速高於10 sccm時,所製備之In2O3奈米線呈現線徑較粗且為柱狀堆疊的階層結構。將上述兩種叢生狀In2O3奈米線進行室溫NO2氣體感測性質測試,發現在相對濕度17% 環境通以10 ppm NO2,尖錐型奈米線的感測敏感度可達到1.3;而柱狀In2O3奈米線之敏感度達1.1,兩者間幾無差異。當相對濕度提升至40 ~ 80%時,檢測10 ppm濃度的NO2氣體,發現尖錐型In2O3敏感度由1.3上升至1.9;而柱狀In2O3之敏感度則維持在1.1 ~ 1.2。接著測試尖錐狀In2O3氣體感測器於室溫高濕度環境中,長時間運作時的安定性變化,於試片運作期間內間斷性通以NO2氣體,可發現工作時間超過7天,錐狀In2O3的感測敏感度皆維持於1.7±0.2。因此,叢生狀In2O3奈米線圖案晶片,在無需添加任何修飾物於表面,有機會達到抗濕與室溫NO2氣體感測的效果。

In this study, correlation between room-temperature and relative humidity (RH), NO2 gas sensing has been examined by use of cluster-patterned indium oxide (In2O3) nanosensors. The patterned In2O3 nanowires were prepared on silicon wafer with interdigitated gold electrodes by vapor transport process. By tuning the flow rate of oxygen, In2O3 nanowires with two different morphologies were fabricated. Tapered In2O3 nanowires with smooth surface were observed under the oxygen flowing rate less than 5 sccm. When the oxygen flowing rate was increased above 10 sccm, the In2O3 nanowires appeared as thick columnar structure.
The cluster-patterned In2O3 nanowires were examined against NO2 gas at room temperature over a range of RH conditions. The sensing response of tapered In2O3 nanowires was 1.3 for 10 ppm NO2 at 17% RH. Similarly, for the columnar In2O3 nanowires, the response was 1.1 at the same condition. After changing the humidity to 40 ~ 80% RH, the response of tapered In2O3 nanowires gradually increased to 1.9 for 10 ppm NO2 gas-sensing, while the columnar In2O3 nanowires showed the same response of 1.1~1.2. The response of tapered In2O3 gas sensors remained at 1.7±0.2 when tested against 10 ppm NO2 at 80% RH for more than 7 days.
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-27起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066072-1.pdf6.55 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.