Please use this identifier to cite or link to this item:
標題: 可擷取雨、風與人體運動能量的防水摩擦奈米發電布
Waterproof Textile-based Triboelectric Nanogenerator for Harvesting Rain, Wind, and Human-motion Energy
作者: 蕭勇麒
Yung-Chi Hsiao
關鍵字: 防水布料;摩擦奈米發電機;雨水能量;風吹能量;智慧服飾;waterproof textile;TENG;raindrop energy;wind energy;smart clothing
引用: 參考文獻 [1] [2] Wang, Z. L., Wu, W., Nanotechnology‐enabled energy harvesting for self‐powered micro‐/nanosystems. Angewandte Chemie International Edition 2012, 51 (47), 11700-11721. [3] Giancoli, Douglas C. Physics: Principles with Applications Fifth. 1998: 623–624. [4] Wang, Z. L., Triboelectric nanogenerators as new energy technology and self-powered sensors–principles, problems and perspectives. Faraday Discussions 2015, 176, 447-458. [5] Wang, Z. L., On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Materials Today 2017, 20 (2), 74-82. [6] Wang, Z. L., Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7 (11), 9533-9557. [7] [8] [9] [10] Henniker, J., 'Triboelectricity in polymers,' Nature 1962, 196 (4853), 474. [11] Davies, D., 'Charge generation on dielectric surfaces,' Journal of Physics D: Applied Physics 1969, 2 (11), 1533. [12] Su, Y., Wen, X., Zhu, G., Yang, J., Chen, J., Bai, P., Wu, Z., Jiang, Y., Wang, Z. L., Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 2014, 9, 186-195. [13] Zhu, G., Bai, P., Chen, J., Wang, Z. L., Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2013, 2 (5), 688-692. [14] Zhao, Z., Pu, X., Du, C., Li, L., Jiang, C., Hu, W., Wang, Z. L., Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano 2016, 10 (2), 1780-1787. [15] [16] Wang, Z. et al., Triboelectric Nanogenerators, Springer, 2016, DOI 10.1007/978-3-319-40039-6. [17] Tang, W., Jiang, T., Fan, F. R., Yu, A. F., Zhang, C., Cao, X., Wang, Z. L., Liquid‐metal electrode for high‐performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Advanced Functional Materials 2015, 25 (24), 3718-3725. [18] Lin, L., Xie, Y., Wang, S., Wu, W., Niu, S., Wen, X., Wang, Z. L., Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 2013, 7 (9), 8266-8274. [19] Cheng, G., Lin, Z. H., Du, Z., Wang, Z. L., Increase output energy and operation frequency of a triboelectric nanogenerator by two grounded electrodes approach. Advanced Functional Materials 2014, 24 (19), 2892-2898. [20] Lee, K. Y., Yoon, H. J., Jiang, T., Wen, X., Seung, W., Kim, S. W., Wang, Z. L., Fully Packaged Self‐Powered Triboelectric Pressure Sensor Using Hemispheres‐Array. Advanced Energy Materials 2016, 6 (11), 1502566. [21] Zhang, B., Zhang, L., Deng, W., Jin, L., Chun, F., Pan, H., Gu, B., Zhang, H., Lv, Z., Yang, W., Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring. ACS Nano 2017, 11 (7), 7440-7446. [22] Li, Z., Chen, J., Guo, H., Fan, X., Wen, Z., Yeh, M. H., Yu, C., Cao, X., Wang, Z. L., Triboelectrification‐Enabled Self‐Powered Detection and Removal of Heavy Metal Ions in Wastewater. Advanced Materials 2016, 28 (15), 2983-2991. [23] Chun, J., Kim, J. W., Jung, W. S., Kang, C. Y., Kim, S. W., Wang, Z. L., Baik, J. M., Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy & Environmental Science 2015, 8 (10), 3006-3012. [24] [25] Fan, F. R., Tian, Z. Q., Wang, Z. L., Flexible triboelectric generator. Nano Energy 2012, 1 (2), 328-334. [26] Wang, Z. L., Chen, J., Lin, L., Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy & Environmental Science 2015, 8 (8), 2250-2282. [27] Xie, Y., Wang, S., Niu, S., Lin, L., Jing, Q., Yang, J., Wu, Z., Wang, Z. L., Grating‐structured freestanding triboelectric‐layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Advanced Materials 2014, 26 (38), 6599-6607. [28] Chen, J., Zhu, G., Yang, J., Jing, Q., Bai, P., Yang, W., Qi, X., Su, Y., Wang, Z. L., Personalized keystroke dynamics for self-powered human–machine interfacing. ACS Nano 2015, 9 (1), 105-116. [29] Zhou, Y. S., Wang, S., Yang, Y., Zhu, G., Niu, S., Lin, Z. H., Liu, Y., Wang, Z. L., Manipulating nanoscale contact electrification by an applied electric field. Nano Letters 2014, 14 (3), 1567-1572. [30] Zhou, Y. S., Li, S., Niu, S., Wang, Z. L., Effect of contact-and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Research 2016, 9 (12), 3705-3713. [31] Xu, C., Zi, Y., Wang, A. C., Zou, H., Dai, Y., He, X., Wang, P., Wang, Y. C., Feng, P., Li, D., On the Electron‐Transfer Mechanism in the Contact‐Electrification Effect. Advanced Materials 2018, 30 (15), 1706790. [32] Zhu, G., Pan, C., Guo, W., Chen, C. Y., Zhou, Y., Yu, R., Wang, Z. L., Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Letters 2012, 12 (9), 4960-4965. [33] J.C. Maxwell, Philosophical Magazine and Journal of Science, London, Edinburg and Dubline, Fourth series, p. 161. [34] Maxwell, J. C., The Scientific Letters and Papers of James Clerk Maxwell: 1846-1862. CUP Archive: 1990; Vol. 1. [35] Kirby, B. J., Hasselbrink Jr, E. F., Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 2004, 25 (2), 187-202. [36] Choi, D., Lee, H., Kang, I. S., Lim, G., Kim, D. S., Kang, K. H., Spontaneous electrical charging of droplets by conventional pipetting. Scientific Reports 2013, 3, 2037. [37] Lin, Z. H., Zhu, G., Zhou, Y. S., Yang, Y., Bai, P., Chen, J., Wang, Z. L., A self‐powered triboelectric nanosensor for mercury ion detection. Angewandte Chemie 2013, 125 (19), 5169-5173. [38] Zhang, H., Yang, Y., Su, Y., Chen, J., Hu, C., Wu, Z., Liu, Y., Wong, C. P., Bando, Y., Wang, Z. L., Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy 2013, 2 (5), 693-701. [39] Nguyen, V., Yang, R., Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy 2013, 2 (5), 604-608. [40] Lin, Z. H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L., Harvesting Water Drop Energy by a Sequential Contact‐Electrification and Electrostatic‐Induction Process. Advanced Materials 2014, 26 (27), 4690-4696. [41] Lin, Z. H., Cheng, G., Wu, W., Pradel, K. C., Wang, Z. L., Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano 2014, 8 (6), 6440-6448. [42] Lin, Z. H., Cheng, G., Lin, L., Lee, S., Wang, Z. L., Water–Solid Surface Contact Electrification and its Use for Harvesting Liquid‐Wave Energy. Angewandte Chemie 2013, 125 (48), 12777-12781. [43] Helseth, L., Guo, X., Contact electrification and energy harvesting using periodically contacted and squeezed water droplets. Langmuir 2015, 31 (10), 3269-3276. [44] Nguyen, V., Zhu, R., Yang, R., Environmental effects on nanogenerators. Nano Energy 2015, 14, 49-61. [45] R. C. Allen, EE-Eval. Eng. 2000, 39, S4.
我們展示了第一款以布料為基礎且可以擷取雨水、風,以及身體動能的防水摩擦奈米發電機。它是由表面具有微米級粗糙度的矽膠摩擦塗層、平織導電布、尼龍網布間隔層以及聚乙烯醋酸乙烯酯封裝層組成。由於矽膠的粗糙表面、立體支撐柱,加上網布間隔層,可有效透過外力驅動主動層間進行接觸/分離的動作,並產生有用的電能。其發電原理的物理層面深層涉及馬克士威爾方程組中的位移電流項,意即透過摩擦起電與靜電感應兩者耦合產生機械能轉換電能的功能。布料可擷取的機械能來源含括自然中隨機頻率的機械能,如:雨水撞擊、風吹拍打等。不僅如此,它也可轉變人體運動能量成為有用的電能。透過雨水撞擊產生最大電壓輸出1900 V/m2,以及電流密度為160 μA/m2,且具有最大20 μW/m2的功率;利用風吹,則可產生最大2000 V/m2,與150 μA/m2的輸出且最大功率可達70 μW/m2;通過人體運動,可產生最大300 V的電壓輸出、40 μA的電流輸出,與1 mW的功率。產生的電力能驅動發光二極體,亦可將電能儲存於電容器中,留到未來需要時使用。更進一步,我們利用微電腦控制系統的資料擷取、程式碼編譯等功能,可將防水能源擷取布料用於自驅動(Self-powered)感測,透過無線傳輸實現,無線操控音樂播放器,完成無線穿戴應用。我們相信此新式防水能源擷取布料將有助於穿戴式電子與智慧服飾的開發。

A newly-designed waterproof textile-based triboelectric nanogenerator (TENG) have been demonstrated. The device was constructed by silicone rubber, woven conducting textiles, nylon mesh spacer, and ethylene vinyl acetate textile. The physical mechanism of TENG is related to Maxwell's displacement current, in short, it's based on a coupling effect of contact electrification and electrostatic induction. This result is endowed phenom of triboelectrification, which was constructed as a negative influence in past, the positive and useful value in more applications. For example, this waterproof textile-based TENG is able to harvest universal low- and random-frequency mechanical energy and power up the personal electronics such as the light emitting diodes or charging the capacitors. The maximum output by raindrop can reach up to 1900 V/m2, 160 μA/m2, and 20 μW/m2; for wind, the output can approach to 2000 V/m2, 150 μA/m2, and 70 μW/m2; by human motion, the output can reach up to 300 V, 40 μA, and 1 mW. Furthermore, by integrating with microcomputer system for data acquisition and processing, the waterproof textile-based TENG was demonstrated as the self-powered sensor for actively human-interactive interfaces and combining with the wireless transmitter, which was able to remote manipulation computer for playing music. It is believed the waterproof textile-based TENG can be beneficial for the development of wearable electronics and smart clothing.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066081-1.pdf6.53 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.