Please use this identifier to cite or link to this item:
標題: 在垂直式溶液布里居曼長晶中溫度梯度與n型Ba8Ga16Sn30熱電晶籠化合物的晶粒尺寸之關係
The relationship between the temperature gradient and grain size of the n-type Ba8Ga16Sn30 thermoelectric clathrates in vertical solution Bridgman growth
作者: 胡玹雋
Hsuan-Chun Hu
關鍵字: 熱電材料;Ba8Ga16Sn30晶籠化合物;垂直式布里居曼長晶法;溫度梯度;晶粒尺寸;潤覆相;thermoelectric material;Ba8Ga16Sn30 clathrates;vertical solution Bridgman method;temperature gradient;grain size;wetting phase
引用: 1. Vining, C.B., An inconvenient truth about thermoelectrics. Nature materials, 2009. 8(2): p. 83-85. 2. Nolas, G., et al., Semiconducting Ge clathrates: Promising candidates for thermoelectric applications. Applied Physics Letters, 1998. 73(2): p. 178-180. 3. Seebeck, T.J., Ueber die magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz. Annalen der Physik, 1826. 82(3): p. 253-286. 4. Peltier, J., Nouvelles expériences sur la caloricité des courants électrique. Ann. Chim. Phys, 1834. 56(371): p. 371. 5. Thomson, W., I. Account of researches in thermo-electricity. Proceedings of the Royal Society of London, 1856. 7: p. 49-58. 6. Thomson, W., III. Electrodynamic qualities of metals.—Part VII. Effects of stress on the magnetization of iron, nickel, and cobalt. Philosophical Transactions of the Royal Society of London, 1879. 170: p. 55-85. 7. Dehkordi, A.M., et al., Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials. Materials Science and Engineering: R: Reports, 2015. 97: p. 1-22. 8. Hicks, L. and M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Physical review B, 1993. 47(24): p. 16631. 9. Goldsmid, H., Conversion efficiency and figure-of-merit. CRC Handbook of Thermoelectrics, 1995: p. 19-25. 10. Altenkirch, E., Über den nutzeffekt der thermosäule. Physikalische Zeitschrift, 1909. 10: p. 560. 11. Altenkirch, E., Elektrothermische Kälteerzeugung und reversible elektrische Heizung. Physikalische Zeitschrift, 1911. 12: p. 920-924. 12. Zhang, X. and L.-D. Zhao, Thermoelectric materials: energy conversion between heat and electricity. Journal of Materiomics, 2015. 1(2): p. 92-105. 13. Fedorov, M., Thermoelectric silicides: past, present and future. J. Thermoelectr, 2009. 2(5). 14. Liu, W.-S., et al., Improvement of Thermoelectric Performance of CoSb3− xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb. Chemistry of Materials, 2008. 20(24): p. 7526-7531. 15. Sootsman, J.R., D.Y. Chung, and M.G. Kanatzidis, New and old concepts in thermoelectric materials. Angewandte Chemie International Edition, 2009. 48(46): p. 8616-8639. 16. Rull-Bravo, M., et al., Skutterudites as thermoelectric materials: revisited. Rsc Advances, 2015. 5(52): p. 41653-41667. 17. Oftedal, I., XXXIII. Die Kristallstruktur von Skutterudit und Speiskobalt-Chloanthit. Zeitschrift für Kristallographie-Crystalline Materials, 1928. 66(1): p. 517-546. 18. KJEKSHUS, A. and T. RAKKE, Compounds with the Skutterudite Type Crystal Structure. III. Acta Chem. Scand. A, 1974. 28(1). 19. Rowe, D., CRC Handbook of Thermoelectrics (CRC, Boca Raton, FL, 1995). Google Scholar, 2005: p. 211-237. 20. El Qader, M.A., et al., Structural, electrical, and thermoelectric properties of CrSi2 thin films. Thin Solid Films, 2013. 545: p. 100-105. 21. Yamamoto, A., et al., Thermoelectric properties of supersaturated Re solid solution of higher manganese silicides. Japanese Journal of Applied Physics, 2016. 55(2): p. 020301. 22. Dasgupta, T., et al., Influence of power factor enhancement on the thermoelectric figure of merit in Mg2Si0.4Sn0.6 based materials. physica status solidi (a), 2014. 211(6): p. 1250-1254. 23. Miyazaki, Y., et al., Preparation and thermoelectric properties of a chimney-ladder (Mn1-xFex)Siγ(γ∼ 1.7) solid solution. Japanese Journal of Applied Physics, 2011. 50(3R): p. 035804. 24. Dong, J., et al., Theoretical evaluation of the thermal conductivity in framework (clathrate) semiconductors. MRS Online Proceedings Library Archive, 2000. 626. 25. Blake, N.P., et al., Structure and stability of the clathrates Ba8Ga16Ge30, Sr8Ga 16Ge30, Ba8Ga16Si30, and Ba8In16Sn30. The Journal of Chemical Physics, 2001. 114(22): p. 10063-10074. 26. Suekuni, K., et al., Simultaneous structure and carrier tuning of dimorphic clathrate Ba8Ga16Sn30. Physical Review B, 2008. 77(23): p. 235119. 27. Kaibe, H., et al. Thermoelectric generating system attached to a carburizing furnace at Komatsu Ltd., Awazu Plant. in AIP Conference Proceedings. 2012. AIP. 28. LaLonde, A.D., et al., Lead telluride alloy thermoelectrics. Materials today, 2011. 14(11): p. 526-532. 29. Snyder, G.J. and E.S. Toberer, Complex thermoelectric materials. Nature materials, 2008. 7(2): p. 105. 30. Ghodke, S.C., Effect of grain boundaries and partial substitution of transition metals on thermoelectric properties of higher manganese silicide. 2016. 31. Zlatic, V. and A. Hewson, Properties and applications of thermoelectric materials: the search for new materials for thermoelectric devices. 2009: Springer Science & Business Media. 32. Rowe, D.M., Thermoelectrics handbook: macro to nano. 2005: CRC press. 33. Von Schnering, H., et al., Crystal structure of the clathrate β-Ba8Ga16Sn30. Zeitschrift für Kristallographie-New Crystal Structures, 1998. 213(1-4): p. 719-719. 34. Eisenmann, B., H. Schäfer, and R. Zagler, Die verbindungen AII8BIII16BIV30 (AII≡ Sr, Ba; BIII≡ Al, Ga; BIV≡ Si, Ge, Sn) und ihre käfigstrukturen. Journal of the Less Common Metals, 1986. 118(1): p. 43-55. 35. Saiga, Y., et al., Thermoelectric properties and structural instability of type-I clathrate Ba8Ga16Sn30 at high temperatures. Solid State Communications, 2012. 152(20): p. 1902-1905. 36. Avila, M., et al., Tunable charge carriers and thermoelectricity of single-crystal Ba8Ga16Sn30. Journal of Physics: Condensed Matter, 2006. 18(5): p. 1585. 37. Hicks, L., et al., Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1996. 53(16): p. R10493. 38. Touzelbaev, M., et al., Thermal characterization of Bi2Te3/Sb2 Te3 superlattices. Journal of Applied Physics, 2001. 90(2): p. 763-767. 39. Kanatzidis, M.G., T. Hogan, and S. Mahanti, Chemistry, physics, and materials science of thermoelectric materials: beyond bismuth telluride. 2012: Springer Science & Business Media. 40. Hicks, L. and M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1993. 47(19): p. 12727. 41. Harman, T., M. Walsh, and G. Turner, Nanostructured thermoelectric materials. Journal of electronic materials, 2005. 34(5): p. L19-L22. 42. Kim, J., et al., Thermoelectricity in semiconductor nanowires. physica status solidi (RRL)-Rapid Research Letters, 2013. 7(10): p. 767-780. 43. Harman, T., et al., Quantum dot superlattice thermoelectric materials and devices. science, 2002. 297(5590): p. 2229-2232. 44. Harman, T., et al., Thermoelectric quantum-dot superlattices with high ZT. Journal of Electronic Materials, 2000. 29(1): p. L1-L2. 45. Huo, D., et al., Structural, transport, and thermal properties of the single-crystalline type-VIII clathrate Ba8Ga16Sn30. Physical Review B, 2005. 71(7): p. 075113. 46. Saiga, Y., et al., Optimization of thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 by carrier tuning. Journal of Alloys and Compounds, 2010. 507(1): p. 1-5. 47. Garitezi, T., et al., Synthesis and Characterization of BaFe2As2 Single Crystals Grown by In-flux Technique. Brazilian Journal of Physics, 2013. 43(4): p. 223-229. 48. 洪欽港, 以垂直布里居曼法製備 N型 BaGaSn晶籠材料與其熱電特性研究. 中興大學材料科學與工程學系所學位論文, 2013: p. 1-95. 49. Abe, T. and I. Sunagawa, Nucleation, growth and stability of CaAl2Si2O8 polymorphs. Physics and Chemistry of Minerals, 1991. 17(6): p. 473-484. 50. Smith, C.S., Grains, phases, and interfaces: An introduction of microstructure. Trans. Metall. Soc. AIME, 1948. 175: p. 15-51. 51. Byrappa, K., et al., Progress in crystal growth and characterization of materials. Progress in Crystal Growth and Characterization of Materials, 2012. 58: p. 164-165. 52. Chen, Y., et al., Vertical Bridgman growth of thermoelectric clathrate Ba8Ga16Sn30 with a type-VIII structure. Journal of Crystal Growth, 2014. 402: p. 312-318. 53. 戴亦儒, 以溫差發電評估含不同晶界潤覆相占比之 BaGaCuSn 第八型晶籠化合物的熱電表現. 中興大學材料科學與工程學系所學位論文, 2016: p. 1-102. 54. Saiga, Y., et al., Thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 doped with Cu. Journal of Alloys and Compounds, 2012. 537: p. 303-307.
五組爐溫參數設定範圍介於550°C到700°C間。當爐溫設定在600°C時,有最小的溫度梯度-6.5°C/cm,樣本有最大平均晶粒尺寸4.4 mm。隨著溫度增加,晶粒尺寸縮小。除此之外,為了提升晶粒尺寸嘗試改變原料總克數和爐體配置,然而晶粒沒有明顯的增大。

In this study, the n-type type-VIII Ba8Ga16Sn30 clathrates were synthesized by the vertical solution Bridgman method from the solution with the atomic ration of Ba8Ga16Sn50. The relationship between the temperature gradient and grain size were investigated. The crystal structure and composition of Ba8Ga16Sn30 samples were determined by XRD and EDX. The results showed that the samples were the type-VIII Ba8Ga16Sn30 clathrates.
Five furnace temperatures were set between 550℃ and 700℃. When the furnace temperature is 600℃, and the temperature gradient of -0.65℃/cm is the lowest, the sample has the largest average grain size of 4.4 mm. And the grain size decreases as the temperature gradient increasing. In addition, in order to improve the grain size, the amount of raw materials and the furnace configuration were also changed. However, the grain size did not change significantly.
The thermoelectric properties including the Seebeck coefficient, electrical conductivity of the Ba8Ga16Sn30 of 40℃ were determined and discussed in dependence of the volume fraction of wetting phase. The results showed that the power factor greatly reduces even when the sample possesses the volume fraction 1.3% of wetting phase.
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-14起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7104066002-1.pdf4.07 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.