Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97934
標題: Mg-Cu合金在模擬尿液產氫之研究
Mg-Cu alloy for generating H2 in artificial urine
作者: 郭俐均
Li-Chun Kuo
關鍵字: 鎂銅合金;氫氣;水解;magnesium-copper alloy;hydrogen;hydrolysis
引用: [1] M. Li, 'Peak oil, the rise of China and India, and the global energy crisis,' Journal of Contemporary Asia, vol. 37, no. 4, pp. 449-471, 2007. [2] 經濟部能源局, 2014能源產業技術白皮書. 經濟部, 2014. [3] M. Huang, L. Ouyang, Z. Chen, C. Peng, X. Zhu, and M. Zhu, 'Hydrogen production via hydrolysis of Mg-oxide composites,' International Journal of Hydrogen Energy, vol. 42, no. 35, pp. 22305-22311, 2017/08/31/ 2017. [4] G. Nicoletti, N. Arcuri, G. Nicoletti, and R. Bruno, 'A technical and environmental comparison between hydrogen and some fossil fuels,' Energy Conversion and Management, vol. 89, pp. 205-213, 2015/01/01/ 2015. [5] T. Nejat Veziroǧlu, 'Hydrogen technology for energy needs of human settlements,' International Journal of Hydrogen Energy, vol. 12, no. 2, pp. 99-129, 1987/01/01/ 1987. [6] R. F. De Souza, J. C. Padilha, R. S. Gonçalves, M. O. De Souza, and J. Rault-Berthelot, 'Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: towards the best device,' Journal of Power Sources, vol. 164, no. 2, pp. 792-798, 2007. [7] M. Ni, M. K. Leung, D. Y. Leung, and K. Sumathy, 'A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,' Renewable and Sustainable Energy Reviews, vol. 11, no. 3, pp. 401-425, 2007. [8] M.-q. Fan, L.-x. Sun, and F. Xu, 'Feasibility study of hydrogen production for micro fuel cell from activated Al–In mixture in water,' Energy, vol. 35, no. 3, pp. 1333-1337, 2010. [9] B. Liu and Z. Li, 'A review: hydrogen generation from borohydride hydrolysis reaction,' Journal of Power Sources, vol. 187, no. 2, pp. 527-534, 2009. [10] M. Chandra and Q. Xu, 'A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia–borane,' Journal of Power Sources, vol. 156, no. 2, pp. 190-194, 2006. [11] X. Huang et al., 'A review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications,' Journal of Power Sources, vol. 229, pp. 133-140, 2013. [12] J. Huot, G. Liang, and R. Schulz, 'Magnesium-based nanocomposites chemical hydrides,' Journal of Alloys and Compounds, vol. 353, no. 1-2, pp. L12-L15, 2003. [13] L. Ouyang et al., 'Excellent hydrolysis performances of Mg3RE hydrides,' international journal of hydrogen energy, vol. 38, no. 7, pp. 2973-2978, 2013. [14] S. Oh et al., 'Design of Mg-Cu alloys for fast hydrogen production, and its application to PEM fuel cell,' Journal of Alloys and Compounds, vol. 741, pp. 590-596, 2018/04/15/ 2018. [15] M. H. Grosjean, M. Zidoune, and L. Roué, 'Hydrogen production from highly corroding Mg-based materials elaborated by ball milling,' Journal of Alloys and Compounds, vol. 404-406, pp. 712-715, 2005/12/08/ 2005. [16] M. H. Grosjean, M. Zidoune, L. Roué, and J. Y. Huot, 'Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials,' International Journal of Hydrogen Energy, vol. 31, no. 1, pp. 109-119, 2006/01/01/ 2006. [17] J.-Y. Uan, C.-Y. Cho, and K.-T. Liu, 'Generation of hydrogen from magnesium alloy scraps catalyzed by platinum-coated titanium net in NaCl aqueous solution,' International Journal of Hydrogen Energy, vol. 32, no. 13, pp. 2337-2343, 2007/09/01/ 2007. [18] 卓錡淵, '鎂合金廢料再生為氫氣能源及其生命週期評估之研究,' 中興大學材料工程學系所學位論文, 2007. [19] O. Kravchenko, L. Sevastyanova, S. Urvanov, and B. Bulychev, 'Formation of hydrogen from oxidation of Mg, Mg alloys and mixture with Ni, Co, Cu and Fe in aqueous salt solutions,' International Journal of Hydrogen Energy, vol. 39, no. 11, pp. 5522-5527, 2014. [20] W. Wu. (2018). 全球工業金屬與貴金屬價格走勢-Stock-ai. Available: https://stock-ai.com/grp-Mix-wwMETAL.php [21] 楊偉甫, '台灣地區水資源利用現況與未來發展問題,' 台灣水環境再生協會, 用水合理化與新生水水源開發論壇, 2010. [22] 張東炯, '探討台灣缺水問題及解決對策-以 2002 年為探討年,' 高苑學報, vol. 10, pp. 17-36, 2003. [23] 台灣行政院農業委員會. (農政與農情,96年(第175-186期), 96年7月(第181期)). 輔導畜牧業廢水處理之成果與展望. Available: https://www.coa.gov.tw/ws.php?id=12997 [24] H. Lee and M. Shoda, 'Removal of COD and color from livestock wastewater by the Fenton method,' Journal of Hazardous Materials, vol. 153, no. 3, pp. 1314-1319, 2008/05/30/ 2008. [25] P. Xia et al., 'Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO⿿loaded diatomite,' Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 506, pp. 220-227, 2016/10/05/ 2016. [26] A. S. Awad et al., 'Effect of carbons (G and CFs), TM (Ni, Fe and Al) and oxides (Nb2O5 and V2O5) on hydrogen generation from ball milled Mg-based hydrolysis reaction for fuel cell,' Energy, vol. 95, pp. 175-186, 2016/01/15/ 2016. [27] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, 'Three-dimensional microfluidic devices fabricated in layered paper and tape,' Proceedings of the National Academy of Sciences, vol. 105, no. 50, pp. 19606-19611, 2008. [28] N. P. Bailey, J. Schiøtz, and K. W. Jacobsen, 'Simulation of Cu-Mg metallic glass: Thermodynamics and structure,' Physical Review B, vol. 69, no. 14, p. 144205, 2004.
摘要: 
本研究中分別添加不同原子百分比的銅於純鎂中,藉熔煉鑄成原子百分比分別為1、3、6、9、12、16 %的鎂銅合金。以模擬尿液水溶液及3.5 wt% NaCl水溶液進行水解產氫實驗。鑄錠中的Cu會與Mg以Mg2Cu存在,合金中透過Mg2Cu加速純鎂相的水解產氫反應。不管在模擬尿液中或是氯化鈉溶液中銅的添加,確實可以加速Mg相的水解速度,所產出的氣體除了氫氣沒有發現其他的氣體。在氯化鈉溶液中因氯離子濃度高,大量的氯離子會與金屬表面的氫氧化鎂形成氯化鎂溶於水中,使水解反應不受氫氧化鎂層阻礙繼續進行。實驗發現當合金中銅添加到12 at%以上,水解反應速度會逐漸下降,這是因為當合金成分越靠近共晶點,共晶組織間距越小,造成水溶液不容易進入間格中的Mg相。鎂銅合金水解後除了產出氫氣,且可以吸附水溶液中的磷酸根以及氨類物質形成磷酸氨鎂。Mg2Cu會在氯化鈉溶液中發生反應,造成在相同比例的鎂銅合金,氯化鈉的最終產氫量會較在模擬尿液條件下的最終產氫量還多。未來我們可以透過不同比例的鎂銅合金產生不同的水解特性,透過添加不同比例的鎂銅合金,使氫氣可以穩定且長時間供應。

In this investigation, magnesium-copper alloys were used to undergo hydrolysis reaction in artificial urine solution and 3.5 wt.% NaCl solution to generate H2 was studied. Magnesium-copper alloys with different atomic percentage of Cu (1, 3, 6, 9, 12 and 16 at. % ) was prepared by melt-casting. In this study, the copper would form Mg2Cu phase which actually accelerate the corrosion reaction of Mg phase in both artificial urine solution and 3.5 wt.% NaCl solution to generate H2 and no others gas was found with magnesium in the Mg-Cu alloys. The concentration of chloride ion in 3.5 wt.% NaCl solution is too high that chloride ion could react with Mg(OH)2 to form MgCl2 then dissolving into the water. The Mg(OH)2 on the surface of Mg-Cu alloys might slow down the hydrolysis reaction. Hydrolysis reaction rate started to decay when the Cu in the Mg-Cu alloy added more than 12 at. %, for the reason that as the composition of Mg-Cu alloy closer to eutectic point, the average spacing between the eutectic phases would become narrow. The more narrow of the average spacing, the harder of the reaction between Mg phase and solution. The hydrolysis reaction of Mg-Cu alloys in artificial urine solution not only generate hydrogen, but also absorb phosphate and ammonium to form magnesium ammonium phosphate. For the same Mg-Cu alloy undergoing hydrolysis reaction, the amount of Hydrogen production in 3.5 wt.% NaCl solution was more than in artificial urine solution.This is because that Mg2Cu phase would react more actively in 3.5 wt.% NaCl solution than in artificial urine solution. In this study, we understood that Mg-Cu alloys with different atomic percentage of Cu have different characteristics for hydrolysis reaction. H2 could be produced stably and supplied for long time if we integrate Mg-Cu alloys effectively.
URI: http://hdl.handle.net/11455/97934
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066043-1.pdf2.08 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.