Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97938
DC FieldValueLanguage
dc.contributor薛富盛zh_TW
dc.contributor.author鄭名哲zh_TW
dc.contributor.authorMing-Zhe Zhengen_US
dc.contributor.other材料科學與工程學系所zh_TW
dc.date2018zh_TW
dc.date.accessioned2019-03-22T06:21:49Z-
dc.identifier.citation[1] T. O. Mason, 'Transparent Conducting Oxides : Status and Opportunities in Basic,' no. August, 1999. [2] A. Klein, 'Transparent conducting oxides for photovoltaics: Manipulation of fermi level,work function and energy band alignment,' Materials (Basel)., vol. 3, no. 11, pp. 4892–4914, 2010. [3] D. Mergel, M. Schenkel, M. Ghebre, and M .Sulkowski, 'Structural and electrical properties of In2O3:Sn films prepared by radio-frequency sputtering,' Thin Solid Films, vol. 392, no. 1, pp. 91–97, 2001. [4] M. A. Sánchez-García, A. Maldonado, L. Castañeda, R.Silva-González, and M. de la L. Olvera, 'Characteristics of SnO2:F Thin Films Deposited by Ultrasonic Spray Pyrolysis:Effect of Water Content in Solution and Substrate Temperature,' Mater. Sci. Appl., vol. 03, no. 10, pp. 690–696, 2012. [5] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, 'Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors,' Jpn. J. Appl. Phys., vol. 48, no. 1, 2009. [6] J. Li, L. Hu, L. Wang, Y. Zhou, G. Grner, and T. J. Marks, 'Organic light-emitting diodes having carbon nanotube anodes,' Nano Lett., vol. 6, no. 11, pp. 2472–2477, 2006. [7] G. P. Kushto, W. Kim, and Z. H. Kafafi, 'Flexible organic photovoltaics using conducting polymer electrodes,' Appl. Phys. Lett., vol. 86, no. 9, pp. 1–3, 2005. [8] S. Bae, 'Roll-to-roll production of 30-inch graphene films for transparent electrodes,' Nat. Nanotechnol., vol. 5, no. 8, pp. 574–578, 2010. [9] J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, 'Solution-processed metal nanowire mesh transparent electrodes,' Nano Lett., vol. 8, no. 2, pp. 689–692, 2008. [10] T. Gao, B. Wang, B. Ding, J. K. Lee, and P. W. Leu, 'Uniform and ordered copper nanomeshes by microsphere lithography for transparent electrodes,' Nano Lett., vol. 14, no. 4, pp. 2105–2110, 2014. [11] https://astamuse.com/ja/published/JP/No/2007260896. . [12] W. K. Kim., 'Cu mesh for flexible transparent conductive electrodes,' Sci. Rep., vol. 5, pp. 1–8, 2015. [13] https://eng.libretexts.org/Core/Materials_Science/Optical_Properties/ [14] C. Guillén and J. Herrero, 'TCO/metal/TCO structures for energy and flexible electronics,' Thin Solid Films, vol. 520, no. 1, pp. 1–17, 2011. [15] W. Wu and N. G. Tassi, 'file:///E:/B06 ColorT.jpg,' Nanoscale, vol. 6, no. 14, p. 7811, 2014. [16] https://en.wikipedia.org/wiki/Metal-mesh_optical_filter. [17] A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, 'Nanohole-enhanced raman scattering,' Nano Lett., vol. 4, no. 10, pp. 2015–2018, 2004. [18] J. June, '2007 Index IEEE Journal of Quantum Electronics,' vol. 43, no. 12, pp. 1235–1260, 2007. [19] M. G. Albrecht and J. A. Creighton, 'Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode,' J. Am. Chem. Soc., vol. 99, no. 15, pp. 5215–5217, 1977. [20] T. W. Ebbesen, 'Extraordinary optical transmission through sub-wavelength hole arrays,' Nature, vol. 86, no. 6, pp. 1114–7, 1998. [21] D. Qu, D. Grischkowsky, and W. Zhang, 'Terahertz transmission properties of thin , subwavelength metallic hole arrays,' vol. 29, no. 8, pp. 896–898, 2004. [22] E. Almeida and Y. Prior, 'Rational design of metallic nanocavities for resonantly enhanced four-wave mixing,' Nat. Publ. Gr., pp. 1–10, 2015. [23] wwhttp://w.dahyoung.com/thinktank_article.php?id=17. [24] 李正中, 薄膜光學與鍍膜技術, 藝軒圖書出版社, 2012. . [25] K. Zilberberg and T. Riedl, 'Metal-nanostructures – a modern and powerful platform to create transparent electrodes for thin-film photovoltaics,' J. Mater. Chem. A, vol. 4, no. 38, pp. 14481–14508, 2016. [26] https://zh.wikipedia.org/wiki/ [27] https://www.nikonimgsupport.com. [28] www.isu.edu.tw/upload/81201/43/news/postfile_11516.pdf. [29] https://kknews.cc/tech/2qorjbg.html. [30] https://wenku.baidu.com/view/212136465fbfc77da369b154.html. [31] 林陵杰,介層洞優先雙層鑲嵌製程之研究,南台科技大學碩博士論文,(2005) [32] H. W. Deckman and J. H. Dunsmuir, 'Natural Lithography,' Applied Physics Letters 41, 377-379 (1982).' [33] 蘇郁捷,奈米球排排站─奈米微粒的自我組裝及應用,(2013) [34] J. C. Hulteen and R. P. VanDuyne, 'Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,' J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 13, no. 3, pp. 1553–1558, 1995. [35] H. Oshima, H. Tamura, M. Takeuchi, A. Inomata, Y. Yanagida, N. Matsushita, H. Komoriya, T. Uzumaki, and A. Tanaka, 'Nanopattern transfer from high-density self-assembled nanosphere arrays on prepatterned substrates,' Nanotechnology 20, 455303(5pp) (2009).' [36] 許雅婷、吳劍侯,烷基硫醇修飾金奈米粒子自組裝多層膜於毛細管電層析之研究,國立清華大學碩博士論文,(2005)。 [37] G. M. Whitesides and B. Grzybowski, 'Self-assembly at all scales,' Science 295, 2418-2421 (2002).' [38] F. Jarai-Szabo, S. Astilean, and Z. Neda, 'Understanding self-assembled nanosphere patterns,' Chemical Physics Letters 408, 241-246 (2005).' [39] P. A. Kralchevsky and K. Nagayama, 'Capillary Forces between Colloidal Particles,' Langmuir 10, 23-36 (1994).' [40] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, 'Two-dimensional crystallization,' Nature, vol. 361, no. 6407. pp. 26–26, 1993. [41] 呂紹瑋,利用自組裝奈米球微影術製備矽化物奈米點陣及二維有序奈米結構之研究,國立中央大學碩博士論文,(2006) [42] 陳紹宇,垂直式矽奈米線陣列於前列腺癌之檢測,國立中興大學碩博士論文,(2015)) [43] W. H. Ming, J. Zhao, X. L. Lu, C. C. Wang, and S. K. Fu, 'Novel characteristics of polystyrene microspheres prepared by microemulsion polymerization,' Macromolecules 29, 7678-7682 (1996).' [44] https://zh.wikipedia.org/wiki/ [45] R. Micheletto, H. Fukuda, and M. Ohtsu, 'A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles,' Langmuir, vol. 11, no. 9, pp. 3333–3336, 1995. [46] H. W. Deckman and J. H. Dunsmuir, 'Applications of Surface Textures Produced with Natural Lithography,' Journal of Vacuum Science & Technology B 1, 1109-1112 (1983).' [47] C. Zhang, S. Cvetanovic, and J. M. Pearce, 'Fabricating ordered 2-D nano-structured arrays using nanosphere lithography,' MethodsX, vol. 4, pp. 229–242, 2017. [48] Y. Wu., 'Fabrication of wafer-size monolayer close-packed colloidal crystals via slope self-assembly and thermal treatment,' Langmuir, vol. 29, no. 46, pp. 14017–14023, 2013. [49] M. Giersig and P. Mulvaney, 'Preparation of Ordered Colloid Monolayers by Electrophoretic Deposition,' Langmuir, vol. 9, no. 12, pp. 3408–3413, 1993. [50] Z. H. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, 'Phase diagram, deisgn of monolayer binary colloidal crystals, and their fabrication based on ethanol-asssited self-assembly at the air/water Interface,' ACS Nano, vol. 6, no. 8, pp. 6706–6716, 2012. [51] J. Rybczynski, U. Ebels, and M. Giersig, 'Large-scale , 2D arrays of magnetic nanoparticles,' vol. 219, pp. 3–8, 2003.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/97938-
dc.description.abstract金屬網格具有高光穿透、高導電性及高可撓性,因此被認為可以用來取代目前常用的透明導電膜-氧化銦錫(ITO)◦我們使用奈米球微影技術來製備銀金屬網格,此方法優點是製程簡單且成本便宜,由於銀容易氧化或硫化,因此會再沉積氧化銦鋅錫(ITZO)來保護銀,ITZO在常溫製程有良好的光電性質,此外也可以提高整體光穿透性◦ 我們成功製備出800 nm及2000 nm聚苯乙烯球單層緊密排列結構,將奈米球模板透過氧電漿蝕刻、濺鍍及奈米球舉離即可得到網格結構。實驗中可以得知,隨著銀厚度提高,光穿透下降,且在紅外光區有光穿透提高現象,此現象與表面電漿極與電磁波共振耦合有關◦ 以800 nm及2000 nm聚苯乙烯為模板所製備出的網格分別在Ag 20 nm/ITZO 40 nm及Ag 30 nm/ITZO 40 nm有最高的品質因子,其值分別為3.1 mΩ-1及1.1 mΩ-1。從實驗中可以得知,在濺鍍過程,原子會散射進奈米球底下,導致線寬變大使光穿透下降,進而使品質因子下降。以2000 nm聚苯乙烯為模板製備出的網格其光穿透較高,但由於網格線寬有部分為不連續,因此造成電阻值提高,進而使品質因子降低。zh_TW
dc.description.abstractMetal mesh has high light transmission, high conductivity and high flexibility, so it is considered to be used to replace the indium tin oxide(ITO)which is commonly used for transparent conductive electrode. We use nanosphere lithography to prepare silver metal mesh.the advantages of nanosphere lithography are low cost and convenient. Since silver is easily oxidized to silver oxide, indium-zinc-oxide (ITZO) is deposited to protect silver. ITZO has good photoelectric properties in the normal temperature process, and it can also improve the overall light transmission. We have successfully prepared single layer closed-packed structure of 800nm and 2000nm polystyrene spheres.Metal mesh was obtained by oxygen plasma etching the nanosphere template、sputtering and nanosphere lift-off. It can be known from the experiment that as the thickness of silver increases, the light transmission decreases, and the light reflection increases.In the infrared light region,we also observe the extraordinary optical transmission.This phenomenon is related to the resonance coupling of the surface plasma and the electromagnetic wave. The meshes prepared by using 800nm and 2000nm polystyrene as templates have the highest figure of merit in Ag 20nm/ITZO 40nm and Ag 30nm/ITZO 40nm respectively, and their values are 3.1mΩ-1 and 1.1mΩ-1. It can be known from the experiment that during the sputtering process, the atoms will scatter into the bottom of the nanosphere.It causes the line width of mesh to increase and the light transmission to decrease, thereby degrading the figure of merit. The mesh prepared by using 2000 nm polystyrene as a template has high light transmission,but since the line width of mesh is partially discontinuous,the resistance value is increased, and the figure of merit is decreased.en_US
dc.description.tableofcontents摘要………………………………………………………………………………….. ⅰ Abstract ……………………………………………………………………………..ⅱ 目錄……...……………………………………………………………………………ⅲ 圖目錄………………………………………………………………………………ⅵ 表目錄………………………………………………………………………………ⅸ 第一章:緒論………………………………………………………………………….1 1.1前言………………………………………………………………………………1 1.2研究動機…………………………………………………………………………2 第二章:簡介及文獻回顧…………………………………………………………….3 2.1透明導電薄膜……………………………………………………………………3 2.1.1透明導電薄膜基礎原理…………………………………………………….3 2.1.2透明導電薄膜發展過程…………………………………………………….5 2.1.3透明導電薄膜替代材料…………………………………………………….5 2.2金屬網格…………………………………………………………………………8 2.2.1金屬網格簡介……………………………………………………………….8 2.2.2光學異常透射……………………………………………………………….11 2.2.3抗反射簡介及原理………………………………………………………….12 2.2.4金屬網格製程……………………………………………………………….15 2.3奈米球微影………………………………………………………………………18 2.3.1奈米球微影簡介…………………………………………………………….18 2.3.2奈米球自組裝……………………………………………………………….20 2.3.3自組裝機制………………………………………………………….21 2.3.4聚苯乙烯奈米粒子簡介…………………………………………………….23 2.3.5排列奈米粒子方法………………………………………………………….23 2.4薄膜濺鍍系統簡介………………………………………………………………26 2.5氧電漿蝕刻簡介……………………………………………………………….27 2.6實驗分析儀器簡介………………………………………………………………28 第三章:實驗方法…………………………………………………………………….30 3.1實驗流程………………………………………………………………....30 3.2實驗細節及實驗參數……………………………………………………………30 第四章:結果討論…………………………………………………………………….37 4.1不同溶劑比例對排列800nm聚苯乙烯球的影響……………………………..37 4.2 800 nm PS球為模板製備不同銀厚度網格研究……………………………….39 4.2.1表面形貌分析……………………………………………………………….39 4.2.2微結構分析(TEM)…………………………………………………………..41 4.2.3晶體結構繞射分析………………………………………………………….42 4.2.4光學分析…………………………………………………………………….43 4.2.5電性分析…………………………………………………………………….47 4.2.6網格之品質因子…………………………………………………………….48 4.3薄膜與網格差異…………………………………………………………………49 4.3.1晶體結構繞射分析………………………………………………………….50 4.3.2光學分析…………………………………………………………………….51 4.3.3電性分析…………………………………………………………………….56 4.3.4薄膜與網格之品質因子…………………………………………………….57 4.4不同溶劑比例對排列2000nm聚苯乙烯球的影響…………………………….58 4.5 2000 nm PS球為模板製備不同銀厚度網格研究……………………………...60 4.5.1表面形貌分析……………………………………………………………….60 4.5.2晶體結構分析………………………………………………………….61 4.5.3光學分析…………………………………………………………………….62 4.5.4電性分析…………………………………………………………………….68 4.5.5網格之品質因子…………………………………………………………….69 第五章:結論………………………………………………………………………….71 參考文獻……………………………………………………………………………..73zh_TW
dc.language.isozh_TWzh_TW
dc.rights不同意授權瀏覽/列印電子全文服務zh_TW
dc.subject金屬網格zh_TW
dc.subject奈米球微影zh_TW
dc.subjectMetal meshen_US
dc.subjectNanosphere Lithographyen_US
dc.title奈米球微影技術製備金屬網格透明電極zh_TW
dc.titleFabrication of Metal Mesh Transparent Conductive Films Using Nanosphere Lithographyen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2021-08-17zh_TW
dc.date.openaccess10000-01-01-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypethesis and dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:材料科學與工程學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066052-1.pdf5.24 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.