Please use this identifier to cite or link to this item:
標題: 奈米銀/次微米銀燒結行為分析與複合化熱化學低溫接合之應用
Sintering behavior analysis of nano/submicron Ag particles and the composite development for thermal-chemical low temperature bonding
作者: 劉仁翔
Jen-Hsiang Liu
關鍵字: 奈米銀;次微米銀;燒結;低溫接合;silver nano-particles;silver submicron particles;sintering;low temperature bonding
引用: [1] D. Feng, Y. Feng, S. Yuan, X. Zhang, and G. Wang, 'Melting behavior of Ag nanoparticles and their clusters'. Appl. Therm. Eng., 2017. 111, p. 1457-1463. [2] Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, H. Kakiuchi, and Y. Yoshida, 'A Low-Temperature Pressureless Bonding Process Using a Trimodal Mixture System of Ag Nanoparticles'. J. Electron. Mater., 2011. 40(12), p. 2398-2402. [3] K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K. S. Kim, and M. Nogi, 'Low-temperature low-pressure die attach with hybrid silver particle paste'. Microelectronics Reliab., 2012. 52(2), p. 375-380. [4] J. Li, X. Yu, T. Shi, C. Cheng, J. Fan, S. Cheng, T. Li, G. Liao, and Z. Tang, 'Depressing of Cu Cu bonding temperature by composting Cu nanoparticle paste with Ag nanoparticles'. J. Alloys Compd., 2017. 709, p. 700-707. [5] Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, and M. Nakamoto, 'A Low-Temperature Bonding Process Using Mixed Cu–Ag Nanoparticles'. J. Electron. Mater., 2010. 39(8), p. 1283-1288. [6] B. Lee, Y. Kim, S. Yang, I. Jeong, and J. Moon, 'A low-cure-temperature copper nano ink for highly conductive printed electrodes'. Curr. Appl. Phys., 2009. 9(2), p. e157-e160. [7] S. J. Kim, J. Lee, Y. H. Choi, D. H. Yeon, and Y. Byun, 'Effect of copper concentration in printable copper inks on film fabrication'. Thin Solid Films, 2012. 520(7), p. 2731-2734. [8] 龔萬庭, '金屬/有機鹽類複合漿料於微電子接合應用之研究'. 中興大學材料科學與工程學系所學位論文, 2015, p. 1-85. [9] 吳庭睿, '低溫低壓接合奈米銀銅複合漿料開發'. 中興大學材料科學與工程學系所學位論文, 2017, p. 1-96. [10] A. A. Levchenko, C. K. Yee, A. N. Parikh, and A.Navrotsky, 'Energetics of Self-Assembly and Chain Confinement in Silver Alkanethiolates:  Enthalpy−Entropy Interplay'. Chem. Mater., 2005. 17(22), p. 5428-5438. [11] M. Buttner, T. Belser, and P. Oelhafen, 'Stability of Thiol-Passivated Gold Particles at Elevated Temperatures Studied by X-ray Photoelectron Spectroscopy'. J. Phys. Chem. B, 2005. 109, p. 5464-5467. [12] D. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian, 'Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics'. J. Electrochem. Soc., 2003. 150(7), p. G412-G417 [13] T. Y. Dong, W. T. Chen, C. W. Wang, C. P. Chen, C. N. Chen, M. C. Lin, J. M. Song, I. G. Chen, and T. H. Kao, 'One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films'. Phys. Chem. Chem. Phys.,, 2009. 11(29), p. 6269–6275. [14] 謝昆宏, '自組裝單層分子保護貴金屬奈米粒子還原與融合行為探討'. 中興大學材料科學與工程學系所學位論文, 2013, p. 1-70. [15] H. Y. Wan, X. M. Luo, X. Li, W. Liu, and G.P. Zhang, 'Nanotwin-enhanced fatigue resistance of ultrathin Ag films for flexible electronics applications'. Mater. Sci. Eng. A, 2016. 676, p. 421-426. [16] S. P. Baker, B. Hoffman, L. Timian, A. Silvernail, and E.A. Ellis, 'Texture transformations in Ag thin films'. Acta Materialia, 2013. 61(19), p. 7121-7132. [17] X. H. Chen, L. Lu, and K. Lu, 'Electrical resistivity of ultrafine-grained copper with nanoscale growth twins'. J. Appl. Phys., 2007. 102(8). [18] D. D. Evanoff and G. Chumanov, 'Synthesis and optical properties of silver nanoparticles and arrays'. Chem. Phys. Chem., 2005. 6(7), p. 1221–1231. [19] M. A. Hegazy and E. Borham, 'Preparation and characterization of silver nanoparticles homogenous thin films'. NRIAG-JAG, 2018. [20] H. K. Kim, H.K. H. Liou, and K. N. Tu, 'Three‐dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu'. Appl. Phys. Lett., 1995. 66(18), p. 2337-2339. [21] T. G. Lei, J. N. Calata, G. Q. Lu, X. Chen, and S. Luo, 'Low-Temperature Sintering of Nanoscale Silver Paste for Attaching Large-Area (>100mm2) Chips'. IEEE Transactions on Components and Packaging Technologies, 2010. 33(1), p. 98-104. [22] T. Morita, E. Ide, Y. Yasuda, A. Hirose, and K. Kobayashi, 'Study of Bonding Technology Using Silver Nanoparticles'. Jpn. J. Appl. Phys.,, 2008. 47(8), p. 6615-6622. [23] J. Yan, G. Zou, A. Hu, and Y.N. Zhou, 'Preparation of PVP coated Cu NPs and the application for low-temperature bonding'. J. Mater. Chem., 2011. 21(40), p. 15981–15986. [24] C. H. Hsiao, W. T. Kung, J. M. Song, J. Y. Chang, and T.C. Chang, 'Development of Cu-Ag pastes for high temperature sustainable bonding'. Mater. Sci. Eng. A, 2017. 684, p. 500-509. [25] X. Liu and H. Nishikawa, 'Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging'. Scripta Mater., 2016. 120, p. 80-84. [26] W. H. Li, P. S. Lin, C. N. Chen, T. Y. Dong, C. H. Tsai, W. T. Kung, J. M. Song, Y. T. Chiu, and P.F. Yang, 'Low-temperature Cu-to-Cu bonding using silver nanoparticles stabilised by saturated dodecanoic acid'. Mater. Sci. Eng. A, 2014. 613, p. 372-378. [27] J. Yan, G. Zou, A. P. Wu, J. Ren, J. Yan, A. Hu, and Y. Zhou, 'Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging'. Scripta Mater., 2012. 66(8), p. 582-585. [28] S. Wang, M. Li, H. Ji, and C. Wang, 'Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging'. Scripta Mater., 2013. 69(11-12), p. 789-792. [29] B. L. Cushing, V. L. Kolesnichenko, and C.J. O'Connor, 'Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles'. Chem. Rev., 2004. 104(9), p. 3893-3946. [30] A. Ulman, 'Formation and Structure of Self-Assembled Monolayers'. Chem. Rev., 1996. 96(4), p. 1533-1554. [31] L. H. Dubois, B. R. Zegarski, and R.G. Nuzzo, 'Spontaneous Organization of Carboxylic Acid Monolayer Films in Ultrahigh Vacuum. Kinetic Constraints to Assembly via Gas-Phase Adsorption'. Langmuir, 2986. 2, p. 412-417. [32] K. Abe, T. Hanada, Y. Yoshida, N. Tanigaki, H. Takiguchi, H. Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase, 'Two-dimensional array of silver nanoparticles'. Thin Solid Films, 1998. 327-329, p. 524-527. [33] C. N. Chen, C. P. Chen, T. Y. Dong, T. C. Chang, M. C. Chen, H. T. Chen, and I.G. Chen, 'Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature'. Acta Materialia, 2012. 60(16), p. 5914-5924. [34] L. Madler, H. K. Kammler, R. Mueller, and S.E. Pratsinis, 'Controlled synthesis ofnanostructured particles by flame spray pyrolysis'. J. Aerosol Sci, 2002. 33, p. 369–389. [35] S. Park, D. Seo, and J. Lee, 'Preparation of Pb-free silver paste containing nanoparticles'. Colloids Surf. A, 2008. 313-314, p. 197-201. [36] Y. Yasuda, E. Ide, and T. Morita, 'Low-Temperature Bonding Using Silver Nanoparticles Stabilized by Short-Chain Alkylamines'. Jpn. J. Appl. Phys.,, 2009. 48. [37] W. Guo, H. Zhang, X. Zhang, L. Liu, P. Peng, G. Zou, and Y. N. Zhou, 'Preparation of nanoparticle and nanowire mixed pastes and their low temperature sintering'. J. Alloys Compd., 2017. 690, p. 86-94. [38] T. Castro, R. Reifenberger, E. Choi, and R.P. Andres, 'Size-dependent melting temperature of individual nanometer-sized metallic clusters'. Phys. Rev. B, 1990. 42(13), p. 8548-8556. [39] C. T. Campbell, S. C. Parker, and D.E. Starr, 'The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering'. 2002. 298. [40] Y. Chen, R. E. Palmer, and J.P. Wilcoxon, 'Sintering of Passivated Gold Nanoparticles under the Electron Beam'. Langmuir, 2006. 22(6), p. 2851-2855. [41] 黃國倫, '銀粒子光燒結特性探討'. 中興大學材料科學與工程學系所學位論文, 2017, p. 1-66. [42] G. Yang, N. A. Amro, Z. B. Starkewolfe, and G. Y. Liu, 'Molecular-Level Approach To Inhibit Degradations of Alkanethiol Self-Assembled Monolayers in Aqueous Media'. Langmuir, 2004. 20(10), p. 3995-4003. [43] Z. Zhang and W. Zhu, 'Controllable synthesis and sintering of silver nanoparticles for inkjet-printed flexible electronics'. J. Alloys Compd., 2015. 649, p. 687-693. [44] S. Magdassi, M. Grouchko, O. Berezin, and A. Kamyshny, 'Triggering the Sintering of Silver Nanoparticles at Room Temperature'. ACS Nano, 2010. 4(4), p. 1943-1948. [45] J. M. Song, T. Y. Pai, K. H. Hsieh, M. Y. Lai, C. N. Cheng, S. Y. Liang, H. Y. Lee, and L.T. Chen, 'Kinetic study on low temperature coalescence of carboxylate-protected Ag nanoparticles for interconnect applications'. RSC Adv., 2016. 6(99), p. 97449-97454. [46] 白宗運, '自組裝羧酸保護奈米銀粒子之還原機制與荷電性質探討'. 中興大學材料科學與工程學系所學位論文, 2014, p. 1-66. [47] C. L. Yu, S. S. Wang, and T.H. Chuang, 'Intermetallic Compounds Formed at the Interface between Liquid Indium and Copper Substrates'. J. Electron. Mater., 2002. 31, p. 488-493. [48] R. Theissmann, M. Fendrich, R. Zinetullin, G. Guenther, G. Schierning, and D.E. Wolf, 'Crystallographic reorientation and nanoparticle coalescence'. Phys. Rev. B, 2008. 78(20), p. 205413. [49] H. A. Alarifi, M. Atis, C. Özdoğan, A. Hu, M. Yavuz, and Y. Zhou, 'Molecular Dynamics Simulation of Sintering and Surface Premelting of Silver Nanoparticles'. Mater. Trans, 2013. 54(6), p. 884-889. [50] B. Ingham, T. H. Lim, C. J. Dotzler, and R.D. Tilley, 'How Nanoparticles Coalesce: An in Situ Study of Au Nanoparticle Aggregation and Grain Growth'. Chem. Mater., 2011. 23(14), p. 3312-3317. [51] L. Ding, R. L. Davidchack, and J. Pan, 'A molecular dynamics study of sintering between nanoparticles'. Comput. Mater. Sci, 2009. 45(2), p. 247-256. [52] S. Y. Moon, T. Sekino, and S.I. Tanaka, 'Crystal Growth of Thiol-Stabilized Gold Nanoparticles by Heat-Induced Coalescence'. Nanoscale Res. Lett, 2010. 5(5), p. 813. [53] S. P. Baker, K. Saha, and J.B. Shu, 'Effect of thickness and Ti interlayers on stresses and texture transformations in thin Ag films during thermal cycling'. Appl. Phys. Lett., 2013. 103(19). [54] T. Mori, Y. Tanaka, Y. Suzaki, and K. Yamaguchi, 'Fabrication of silver thin film for single-crystalline nanopillar: effects of thickness and grain size'. Applied Physics A, 2015. 121(4), p. 1359-1363. [55] M. Seita, C. M. Pecnik, S. Frank, and R. Spolenak, 'Direct evidence for stress-induced texture evolution and grain growth'. Acta Materialia, 2010. 58, p. 6513–6525. [56] C. Khare, J. W. Gerlach, C. Patzig, and B. Rauschenbach, 'Ion beam sputter deposition of epitaxial Ag films on native oxide covered Si(100) substrates'. Appl. Surf. Sci., 2012. 258(24), p. 9617-9622. [57] 蕭靖寰, '銅/銀複合微粒於高功率晶片固晶接合之應用'. 2015. [58] C. S. Barret and T.B. Massalski, Structure of Metals Pergamon Press. 1980, Oxford Google Scholar. [59] M. M. Sk and C.Y. Yue, 'Synthesis of polyaniline nanotubes using the self-assembly behavior of vitamin C: a mechanistic study and application in electrochemical supercapacitors'. J. Mater. Chem., 2014. 2(8), p. 2830-2838. [60] J. Jiu, H. Zhang, Y. Suzuki, S. Nagao, Y. Akai, T. Sugahara, and K. Suganuma, 'Die-attaching silver paste based on a novel solvent for high-power semiconductor devices'. J. Mater. Sci., 2015. 51(7), p. 3422-3430. [61] H. H. Lee, K. S. Chou, and Z.W. Shih, 'Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives'. Int. J. Adhes. Adhes., 2005. 25(5), p. 437-441. [62] R. Zhang, W. Lin, K. S. Moon, and C. P. Wong, 'Fast preparation of printable highly conductive polymer nanocomposites by thermal decomposition of silver carboxylate and sintering of silver nanoparticles'. ACS Appl. Mater. Interfaces, 2010. 2(9), p. 2637–2645. [63] R. Zhang, K. S. Moon, W. Lin, and C. P. Wong, 'Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles'. J. Mater. Chem., 2010. 20(10), p. 2018–2023. [64] C. Yang, C. P. Wong, and M.M.F. Yuen, 'Printed electrically conductive composites: conductive filler designs and surface engineering'. J. Mater. Chem., 2013. 1(26), p. 4052–4069. [65] P. Peng, A. Hu, B. Zhao, A. P. Gerlich, and Y.N. Zhou, 'Reinforcement of Ag nanoparticle paste with nanowires for low temperature pressureless bonding'. J. Mater. Sci., 2012. 47(19), p. 6801-6811. [66] Z. X. Zhang, X. Y. Chen, and F. Xiao, 'The Sintering Behavior of Electrically Conductive Adhesives Filled with Surface Modified Silver Nanowires'. J. Adhes. Sci. Technol., 2012. 25(13), p. 1465-1480. [67] G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, A. Hu., and Y.N. Zhou, 'Low Temperature Bonding of Cu Metal through Sintering of Ag Nanoparticles for High Temperature Electronic Application'. Surf. Sci, 2011. 3, p. 70-75. [68] B. S. Lee and J.W. Yoon, 'Die-attach for power devices using the Ag sintering process: Interfacial microstructure and mechanical strength'. Met. Mate. Int., 2017. 23(5), p. 958-963. [69] M. S. Kim and H. Nishikawa, 'Effects of bonding temperature on microstructure, fracture behavior and joint strength of Ag nanoporous bonding for high temperature die attach'. Mater. Sci. Eng. A, 2015. 645, p. 264-272. [70] Y. Akada, H. Tatsumi, T. Yamaguchi, A Hirose, T. Morita, and E. Ide, 'Interfacial Bonding Mechanism Using Silver Metallo-Organic Nanoparticles to Bulk Metals and Observation of Sintering Behavior'. Mater. Trans, 2008. 49(7), p. 1537-1545. [71] A. Hu, J. Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C. X. Xu, 'Low temperature sintering of Ag nanoparticles for flexible electronics packaging'. Appl. Phys. Lett., 2010. 97(15). [72] T. Wang, X. Chen, G. Q. Lu, and G. Y. Lei, 'Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection'. J. Electron. Mater., 2007. 36(10), p. 1333-1340. [73] W. H. Lin, C. P. Chang, W. H. Hwu, and M.D. Ger, 'The rheological behaviors of screen-printing pastes'. J. Mater. Process. Technol., 2008. 197(1-3), p. 284-291. [74] H. Nishikawa, X. Liu, X. Wang, A. Fujita, N. Kamada, and M. Saito, 'Microscale Ag particle paste for sintered joints in high-power devices'. Mater. Lett., 2015. 161, p. 231-233. [75] M. Yamamoto, Y. Kashiwagi, and M. Nakamoto, 'Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine'. Langmuir, 2006. 22(20), p. 8581-8586. [76] S. K. Papageorgiou, E. P. Kouvelos, E. P. Favvas, A. A. Sapalidis, G. E. Romanos, and F.K. Katsaros, 'Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy'. Carbohydr. Res., 2010. 345(4), p. 469-473. [77] P. Mulvaney, 'Surface plasmon spectroscopy of nanosized metal particles'. Langmuir, 1996. 12(3), p. 788-800.
銀奈米粒子於微電子製程之應用日趨成熟,藉由適當的漿料調配或製程改良,便能於低溫形成導電或接點。本研究結合熱燒結及化學燒結的概念,將具還原性之化學物質(甲酸及抗敗血酸)與羧酸保護銀奈米粒子混合製成複合化熱化學銀漿,能更有效脫附保護劑脫附並降低燒結溫度。在低溫接合方面,添加甲酸之複合銀漿於大氣中以200oC、10MPa之壓合條件下持溫30分鐘,銀對銀基材接點剪力強度高達33.0 MPa,於銅對銅接點強度則可至29.1MPa,與未摻雜相比,強度提升近5.8倍。在燒結體電阻方面,甲酸複合銀漿於開放大氣環境電阻率可至14.3µΩ-cm;模擬熱壓條件燒結體電阻率可進一步低至6.52 µΩ-cm。總體而言甲酸添加效果優於抗敗血酸,添加微量乙基纖維素以改善燒結體凝聚情形亦進行系列探討。

Taking the advantages of low sintering temperature and high processing flexibility, Ag nanoparticles have been widely used to fabricate interconnections and joints. With proper ingredients and processing designs, the sintering temperature can be further reduced. This studiy combines the concept of thermal and chemical sintering together for removing surfactants and sintering particles together more effectively. Nanoparticles mixed with selected reductants (formic acid and ascorbic acid) are thus developed. Expermental results show that both the mixed pastes have better performance in electrical conductance and bonding strength than those undopped, and formic acid contributes to a stronger effect. For instance, Cu/Cu joints and Ag/Ag joints bonded by formic acid-added pastes exhibit joint strength up to 29.1 MPa and 33.0 MPa respectively subjected to bonding at 200oC under 10 MPa, which is five times greater than those using undopped nanoparticle pastes. After heating at 200oC, the sintered structure of formic acid-added pastes possesses electrical resistivity of 14.3μΩ-cm in open circumstance, which can be further lowered to 6.5 μΩ-cm in simulated thermal compression conditions. The effects of ethyl cellulose thickener on sintered structure morphology, electrical resistivity and bonding strength are also explored.
An in-depth investigation is also conducted to study microstructural features of the Ag structures sintered by thermal or chemical means. The growth texture, twin density, and their relationships with electrical resistivity are also studied. A comparison with submicron Ag particles prepared by thermal spray pyrolysis is made to clarify the size effect on particle sintering behavior. It is found that chemically-sintered structures show a strong (111) texture, while thermally-sintered films has weak (100) preferred orientation and high twin density especially those heated under formic acid vapor. For chemical-sintering, a reduced film thickness intensifies (111) texture further.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066020-1.pdf9.94 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.