Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97944
標題: 探討Ru摻雜之SrTiO3奈米粒子的能帶結構與其產氫應用潛力
Study on band structure of SrTiO3 nanoparticles doped with Ru and its potential for hydrogen production.
作者: 林立人
Li-Ren Lin
關鍵字: 光水解;鈦酸鍶;摻雜;產氫;Water splitting;SrTiO3;Doped;Hydrogen generation
引用: [1]. M. Artus, S. Ammar, L. Sicard, J.Y. Piquemal, F. Herbst, M.J. Vaulay, F. Fiévet, and V. Richard, Synthesis and Magnetic Properties of Ferrimagnetic CoFe2O4 Nanoparticles Embedded in an Antiferromagnetic NiO Matrix. Chemistry of Ma-terials 2008 20 (15), 4861-4872 [2]. H. Uchida, R. Ueno, H. Nakaki, H. Funakubo, S. Koda, Ion Modification for Improvement of Insulating and Ferroelectric Properties of BiFeO3 Thin Film Fabricated by Chemical Solution Deposition. J. Appl. Phys., Vol. 44, No. 18 (2005) [3]. A.P. Mackenzie, Y. Maeno, The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys., Vol. 75, No. 2, April 2003 [4]. Nada F. Atta, A. Galal, Shimaa M. Ali, The Catalytic Activity of Ruthenates ARuO3 (A=Ca, Sr or Ba) for the Hydrogen Evolution Reaction in Acidic Medium. Int. J. Electrochem. Sci., 7 (2012) 725 – 746 [5]. K.Van, C. Elsässer, Bulk electronic structure of SrTiO3:Experiment and theory. Journal of Applied Physics 90, 6156 (2001) [6]. K. A. Müller, H. Burkard, SrTiO3:An intrinsic quantum paraelectric below 4K.Phys. Rev. B 19, 3593 (1979) [7]. A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, N. Setter, Ferroelec-tric Materials for Microwave Tunable Applications. Journal of Electroceramics, 11, 5–66, (2003) [8]. J.G. Bendnorz, K.A. Müller, Sr1-xCaxTiO3:An XY Quantum Ferroelectric with Transition to Randomness. Phys. Rev. Lett. 52, 2289 (1984) [9]. H. Uwe, T. Sakudo, Stress-induced ferroelectricity and soft phonon modes in SrTiO3. Phys. Rev. B 13, 271 (1976) [10]. J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy & D. G. Schlom, Room-temperature ferroelec-tricity in strained SrTiO3. Nature 430, 758–761 (2004) [11]. Shvartsman VV1, Bedanta S, Borisov P, Kleemann W, Tkach A, Vilarinho PM. (Sr,Mn) TiO3: a magnetoelectric multiglass. Phys Rev Lett. 2008 101(16):165704. [12]. P. Zubko, G. Catalan, A. Buckley, P. R. L. Welche, J. F. Scott, Strain gradient in-duced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007) [13]. M.Liu, Hydrothermal method and Solvent thermal method. Hefei National Labor-atory for Microscale Material Science. [14]. Richard I. Walton, Subcritical solvothermal synthesis of condensed inorganic ma-terials. Chem. Soc. Rev., 2002, 31, 230–238 [15]. V. Kalyani, B.S.Vasile, A. Ianculescu, M.T. Buscaglia, V. Buscaglia, P. Nanni, Hydrothermal Synthesis of SrTiO3 Mesocrystals: Single Crystal to Mesocrystal Transformation Induced by Topochemical Reaction. Cryst. Growth Des. 2012, 12, 4450−4456 [16]. Fujishima, K. Honda, Electrochemical Photolysis of Water at Semiconductor Elec-trode. Nature 238, 37–38 (1972) [17]. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 2009, 38, 253-278 [18]. T. Ishii, H. Kato, A. Kudo, H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 163 (2004) 181–186 [19]. H. Kato, A. Kudo, Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium. J. Phys. Chem. B, 2002, 106 (19), pp 5029–5034 [20]. B. Niishiro, H. Kato, A. Kudo, Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys. Chem. Chem. Phys., 2005,7, 2241-2245 [21]. M. Faraday, Experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. Lond. 1857 147, 145-181, [22]. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der physik 1908 330, 377-445 [23]. T. Nakato, K. Kuroda, C. Kato, Photoreduction of methylviologen in the interlayer of K4Nb6O17. J. Chem. Soc., Chem. Commun., 1989,0, 1144-1145 [24]. Malgorzata M. Lencka, Richard E. Riman, Thermodynamic modeling of hydro-thermal synthesis of ceramic powders. Chem. Mater., 1993, 5 (1), pp 61–70 [25]. Malgorzata M. Lencka, Richard E. Riman, Thermodynamics of the Hydrothermal Synthesis of Calcium Titanate with Reference to Other Alkaline-Earth Titanates. Chem. Mater., 1995, 7 (1), pp 18–25 [26]. Malgorzata M. Lencka, Richard E. Riman, Hydrothermal synthesis of perovskite materials: Thermodynamic modeling and experimental verification. Ferroelectrics, 151(1), 159–164. (1994) [27]. H. Shen, Y. Lu, Y. Wang, Z. Pan, G. Cao, X. Yan, G. Fang, Low temperature hy-drothermal synthesis of SrTiO3 nanoparticles without alkali and their effective photocatalytic activity. Journal of Advanced Ceramics 2016, 5(4): 298–307 [28]. W. Dong, X. Li, J. Yu, W. Guo, B. Li, L. Tan, C. Li, J. Shi, G. Wang, Porous SrTiO3 spheres with enhanced photocatalytic performance. Materials Letters 67 (2012) 131–134 [29]. S.T. Huang, W.W. Lee, J.L. Chang, W.S. Huang, S.Y. Chou, C.C. Chen, Hydro-thermal synthesis of SrTiO3 nanocubes: Characterization, photocatalytic activities, and degradation pathway. Journal of the Taiwan Institute of Chemical Engineers 45 (2014) 1927–1936 [30]. S.Shuang, R. Lv, Z. Xie, Z. Zhang, Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays. Scientific Reports volume 6, Article number: 26670 (2016) [31]. G. Panomsuwan, N. Zettsu, N. Saito, Gold Nanoparticles Supported on SrTiO3 by solution Plasma Sputter Deposition for Enhancing UV- and Visible-light Photo-catalytic Efficiency. MRS Proceedings, 1509, (2013) [32]. J. Yin, J. Ye, Enhanced photoelectrolysis of water with photoanode Nb:SrTiO3. Appl. Phys. Lett. 85, 689 (2004) [33]. R. Konta, T. Ishii, H. Kato, A. Kudo, Photocatalytic Activities of Nobel Metal Ion Doped SrTiO3 under Visible Light Irradiation. J. Phys. Chem. B, 2004, 108 (26), pp 8992–8995 [34]. G. Wu, P. Li, D. Xu, B. Luo, Y. Hong, W. Shi, C. Liu, Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3 nanocubes. Applied Surface Science 333 (2015) 39–47 [35]. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mate-rials Research Bulletin. 3: 37–46 (1968) [36]. A.E. Souza, G.T.A. Santos, B.C. Barra, W.D. Macedo Jr, S.R. Teixeira, C.M. Santos, A.M.O.R. Senos, L. Amara, E. Longo, Photoluminescence of SrTiO3:Influence of Particle Size and Morphology. Cryst. Growth Des. 2012, 12, 5671−5679 [37]. Richard T. Haasch, E. Breckenfeld, L.W. Martin, Single Crystal Perovskite Ana-lyzed Using X-ray Photoelectron Spectroscopy: 1. SrTiO3(001). Surface Science Spectra 21, 87 (2014); [38]. E.A.V. Ferri, J.C. Sczancoski, L.S. Cavalcantea, E.C. Paris, J.W.M. Espinosa, A.T. de Figueiredo, P.S. Pizani, V.R. Mastelaroc, J.A. Varela, E. Longo, Photolumines-cence behavior in MgTiO3 powders with vacancy/distorted cluster and octahedral tilting. Materials Chemistry and Physics 117 (2009) 192–198 [39]. https://xpssimplified.com/elements/oxygen.php [40]. S. Hashimoto, A. Tanaka, Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment. Surf. Interface Anal. (2002); 34: 262–265
摘要: 
鈦酸鍶是一鈣鈦礦結構之新穎氧化物半導體,其擁有較寬的能隙約3.2 eV。在過去十年裡有許多研究指出鈦酸鍶有良好的化學及熱穩定性,而被發現其擁有光催化等性質,因此目前較著重於光陽極之光電元件及太陽能電池等系上。然而,也因為能隙較寬的原因阻礙了在可見光波段的相關應用,故有一些方法的目的都是調整其能隙來改善其可見光波段的吸收能力。
本實驗中,我們使用低成本之水熱法成功的合成鈦酸鍶粒子,透過高解析穿透式電子顯微鏡(High-Resolution Transmittance Electron Microscopy:HR-TEM)得知尺寸約為20~30奈米,並且摻雜不同比例的釕原子,並觀察其光電化學的表現。結構的部分利用X光繞射儀(X-Ray Diffraction:XRD)可以得知此摻雜系統的結晶狀況與觀察到鈣鈦礦的繞射峰特徵,搭配Scherrer-Equation的計算後晶粒尺寸約為20~30奈米。進一步的搭配電子顯微鏡的觀察可得知其為單晶之奈米粒子,從中得知合成之奈米粒子擁有非常高之品質。除此之外,光致發螢光光譜儀(Photoluminescence:PL)顯示了當鈦酸鍶奈米粒子摻釕後,其峰值強度逐漸下降,是由於能帶結構的改變。UV-Vis分光光譜儀技術更指出不同比例釕之鈦酸鍶奈米粒子的光學能隙隨著釕含量提升而下降。而電子能譜表面分析光譜(X-ray Photoelectron Spectroscopy:XPS)也幫助我們了解釕與鈦原子可能在調整鈦酸鍶奈米粒子能帶結構中扮演一重要的角色,更進一步的利用VBM的技術幫助我們了解能帶結構。另外,最後將Nb:SrTiO3單晶基板作為鈦酸鍶奈米粒子之電極並觀察光電化學的性質,結果也顯示了釕確實在此系統中能夠有效的幫助調整鈦酸鍶奈米粒子之可見光波段吸收能力,但較不適合過多的摻雜比例;另一方面,當釕摻雜進入晶格中,還能觀察到其起始電位的下降,這也更進一步的說明了釕的摻雜能夠降低其電位而產生水解的現象,對於產氫的效能來說,具有一定的影響。在未來的氫能源使用上能夠有所貢獻。

Perovskite strontium titanate (SrTiO3, STO), a wide band-gap (~3.2 eV) semicon-ductor, has been widely studied as the photocatalysts or photoelectrodes for optoelec-tronic devices or solar cell systems because of its high chemical stability and activity in the past several decades. However, its large band gap also hinders the practical use in visible light related applications. Therefore, many methods have been proposed to mod-ulate the band gap of STO and obtain the desired optical-electronic properties. In this study, we fabricated SrTiO3(STO) nanoparticles doped with different ratio of Ru through a simple and low-cost hydrothermal process to investigate their lattice and elec-tronic structures, and the corresponding photoelectrochemical (PEC) performance. The size of nanoparticles is around 20~30 nm obtained from high resolution transmission electron microscopy. Structural characterization by X-ray diffraction has been adopt to understand the crystallinity of this system, where a typical perovskite feature has been observed. X-ray photoemission spectroscopy (XPS) have been performed to obtain the electronic structures of each element, of which the valence states plays an important role in modulating the band structure of STO. The final products have been placed on elec-trodes Nb doped STO to see the PEC performance. The result shows the Ru incorpo-rated STO nanoparticles can indeed extend the operation toward visible light region and improve the hydrogen generation compared to the pristine STO nanoparticles.
URI: http://hdl.handle.net/11455/97944
Rights: 同意授權瀏覽/列印電子全文服務,2021-12-03起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066055-1.pdf7.36 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.