Please use this identifier to cite or link to this item:
標題: 探討添加Re, Ru元素與NixPd100-x中間層對CoCrPt磁性及微結構的影響
Magnetic properties and microstructure of CoCrPtX (X=Re, Ru) and CoCrPt-oxide/Ru/NixPd100-x films
作者: 畢成
Chen Pi
關鍵字: 鎳鈀;錸;鈷鉻鉑;NiPd;Re;CoCrPt
引用: [1] B. Poulsen,U.S.Patent 661,619.(1900). [2] 引用資料來源網址''. [3] 引用資料來源網址' heat-assisted-magnetic.html'. [4] T. Suzuki, T. Kiya, N. Honda, and K. Ouchi, 'Fe-Pt perpendicular double-layered media with high recording resolution,' J. Magn. Magn. Mater., vol. 235, no. 1–3, pp. 312–318, 2001. [5] B. D. Terris and T. Thomson, 'Nanofabricated and self-assembled magnetic structures as data storage media,' J. Phys. D. Appl. Phys., vol. 38, no. 12, pp. R199–R222, 2005. [6] D. Weller et al., 'A HAMR media technology roadmap to an areal density of 4 Tb/in2,' IEEE Trans. Magn., vol. 50, no. 1, 2014. [7] R. Wood, 'Future hard disk drive systems,' J. Magn. Magn. Mater., vol. 321, no. 6, pp. 555–561, 2009. [8] S. H. Charap, Pu-Ling Lu, and Yanjun He, 'Thermal stability of recorded information at high densities,' IEEE Trans. Magn., vol. 33, no. 1, pp. 978–983, 1997. [9] S. Iwasaki and K. Takemura, 'An analysis for the circular mode of magnetization in short wavelength recording,' IEEE Trans. Magn., vol. 11, no. 5, pp. 1173–1175, 1975. [10] 引用資料來源網址''. [11] D. Litvinov, 'Recording physics of perpendicular media: soft underlayers,' J. Magn. Magn. Mater., vol. 232, no. 1–2, pp. 84–90, 2001. [12] Y. Shiroishi et al., 'Future options for HDD storage,' IEEE Trans. Magn., vol. 45, no. 10, pp. 3816–3822, 2009. [13] D. Weller et al., 'High Ku materials approach to 100 Gbits/in2,' IEEE Trans. Magn., vol. 36, no. 1, pp. 10–15, 2000. [14] D. Weller, O. Mosendz, G. Parker, S. Pisana, & T. S. Santos, 'L10 FePtX–Y media for heat‐assisted magnetic recording,' physica status solidi (a),vol. 210, p. 1245-1260 (2013) . [15] J. Schare, L. Guan, J. G. Zhu, and M. Kryder, 'Design considerations for single-pole type write heads,' INTERMAG Eur. 2002 - IEEE Int. Magn. Conf., vol. 39, no. 3, pp. 1842–1845, 2002. [16] D. Litvinov, M. H. Kryder, and S. Khizroev, 'Physics of perpendicular magnetic recording: Playback,' J. Appl. Phys., vol. 93, no. 11, pp. 9155–9164, 2003. [17] A. Unnikrishnan and B. O. F. Technology, 'Perpendicular recording,' vol. 38, no. November, pp. 2066–2068, 2008. [18] S. Saito, F. Hoshi, N. Itagaki, and M. Takahashi, 'Characterization to realize CoCr-based perpendicular magnetic recording media with high squareness and normalized coercivity,' J. Appl. Phys., vol. 93, no. 10 2, pp. 6775–6777, 2003. [19] S. Saito, F. Hoshi, and M. Takahashi, 'Effects of Very Thin Carbon Seedlayer on Formation of hcp Phase for CoCrPtB/Co60Cr40 Perpendicular,' IEEE Trans. Magn., vol. 38, no. 5, pp. 2000–2002, 2002. [20] C. L. Platt, J. K. Howard, A. G. Roy, and D. E. Laughlin, 'Influence of stress on nucleation field of CoCrPt perpendicular media,' J. Appl. Phys., vol. 91, no. 2, pp. 772–774, 2002. [21] Y. Hsu, K. W. Wierman, B. Lu, T. J. Klemmer, and J. K. Howard, 'TixZr1-x Underlayers for CoCrPtB Perpendicular Magnetic Recording Media,' IEEE Trans. Magn., vol. 38, no. 2, pp. 1436–1440, 2002. [22] C. J. Sun et al., 'Long-range order and short-range order study on CoCrPt/Ti films by synchrotron x-ray scattering and extended x-ray absorption fine structure spectroscopy,' J. Appl. Phys., vol. 91, no. 10 I, pp. 7182–7184, 2002. [23] P. Jang, S. Hong, and J. Kim, 'Role of Ag seed layer for CoCrPt/Ti perpendicular recording media,' J. Appl. Phys., vol. 93, no. 10 3, pp. 7741–7743, 2003. [24] A. G. Roy and D. E. Laughlin, 'Effect of seed layers in improving the crystallographic texture of CoCrPt perpendicular recording media,' J. Appl. Phys., vol. 91, no. 10 I, pp. 8076–8078, 2002. [25] C. J. Sun, G. M. Chow, J. P. Wang, E. W. Soo, and J. H. Je, 'Investigation of the crystallographic texture and interface roughness on CoCrPt /Ti magnetic thin films,' J. Appl. Phys., vol. 93, no. 10, pp. 8725–8727, 2003. [26] Y. Hirayama, A. Kikukawa, Y. Honda, N. Shimizu, and M. Futamoto, 'Low Noise Performance of CoCrPt Single-Layer,' vol. 36, no. 5, pp. 2396–2398, 2000. [27] P. E. Kelly, K. O' Grady, and P. I. Mayo, 'Switching mechanisms in cobalt phosphorus thin films,' Int. Magn. Conf., vol. 25, no. 5, pp. 3881–3883, 1989. [28] X. W. Wu, R. J. M. Van deVeerdonk, R. W. Chantrell, and D. Weller, '∆M study of perpendicular recording media,' J. Appl. Phys., vol. 93, no. 10 2, pp. 6760–6762, 2003. [29] N. A. Spaldin, Magnetic Material, Ch2 ,p. 17 (2011). [30] 許樹恩、吳泰伯合著,'X光繞射原理與材料結構分析'第十三章,(2006)。 [31] B. D. Cullity, 'introduction to magnetic materials', Ch7, Wesley (1972). [32] 金重勳、李景明、張慶瑞,'磁性技術手冊',中華民國磁性技術協會,p.24,(2002)。 [33] 金重勳、李景明、張慶瑞,'磁性技術手冊',中華民國磁性技術協會,p.26,(2002)。 [34] 金重勳、李景明、張慶瑞,'磁性技術手冊',中華民國磁性技術協會,P25,(2002)。 [35] Milton Ohring 'Materials Science of Thin Films,' Ch9 , p. 518 (2002). [36] Milton Ohring 'Materials Science of Thin Films,' Ch 7 , p360 (2002). [37] B. Marchon et al., 'Head – Disk Interface Materials Issues in Heat-Assisted Magnetic Recording,' vol. 50, no. 3, 2014. [38] J. S. Chen, B. C. Lim, and T. J. Zhou, 'Effect of ultrahigh vacuum on ordering temperature, crystallographic and magnetic properties of L10 FePt(001) film on a CrRu underlayer,' J. Vac. Sci. Technol. A, vol. 23, no. 1, pp. 184–189, 2005. [39] L. S. Huang, J. S. Chen, J. F. Hu, and Y. F. Ding, 'NiW/Ru Underlayer for CoPt–SiO2 Granular Perpendicular Recording Media,' J. Nanosci. Nanotechnol., vol. 11, no. 3, pp. 2636–2639, 2011. [40] G. Choe, B. R. Acharya, K. E. Johnson, and K. J. Lee, 'Transition and DC Noise Characteristics of Longitudinal Oriented Media,' IEEE Trans. Magn., vol. 39, no. 5, pp. 2264–2266, 2003. [41] T. Shimatsu et al., 'Ku2 magnetic anisotropy term of CoPtCr-SiO2 media for high density recording,' J. Appl. Phys., vol. 97, no. 10, 2005. [42] S. N. Piramanayagam, H. B. Zhao, J. Z. Shi, and C. S. Mah, 'Palladium-based intermediate layers for CoCrPt-SiO2 perpendicular recording media,' Appl. Phys. Lett., vol. 88, no. 9, pp. 10–13, 2006. [43] W. Shen, A. Das, and M. Racine, 'Reduction of Ru Underlayer Thickness for CoCrPt-SiO2 Perpendicular Recording Media,' Magn. IEEE …, vol. 42, no. 10, pp. 2381–2383, 2006. [44] K. Srinivasan and S. N. Piramanayagam, 'Perpendicular Recording Media,' Dev. Data Storage Mater. Perspect., 2011. [45] M. Zheng, G. Choe, K. E. Johnson, L. Gao, and S. H. Liou, 'Seedlayer and preheating effects on crystallography and recording performance of CoCrPtB perpendicular media,' IEEE Trans. Magn., vol. 38, no. 5 I, pp. 1979–1981, 2002. [46] S. H. Park et al., 'Effect of top Ru deposition pressure on magnetic and microstructural properties of CoCrPt-SiO2 media in two-step Ru layer,' J. Appl. Phys., vol. 99, no. 8, pp. 30–33, 2006. [47] G. Choe, M. Zheng, E. N. Abarra, B. R. Acharya, and K. J. Lee, 'Magnetic and recording characteristics of perpendicular magnetic media with different anisotropy orientation dispersions,' J. Appl. Phys., vol. 97, no. 10, pp. 1–4, 2005. [48] R. Mukai, T. Uzumaki, and A. Tanaka, 'Signal-to-media-noise ratio improvement of CoCrPt-SiO2 granular perpendicular media by stacked Ru underlayer,' J. Appl. Phys., vol. 97, no. 10, 2005. [49] N. Honda, T. Kiya, and K. Ouchi, 'Correspondence of Medium Noise and Recording Characteristics to M-H Loop in Perpendicular Recording Media,' J. Magn. Soc. Japan, vol. 21, pp. 505–508, 1997. [50] H. Sato1, T. Shimatsu1, Y. Okazaki1, O. Kitakami2, S. Okamoto2 'Magnetic Anisotropy of Co-M-Pt (M = Cr, Mo, Ru, W, Re) Perpendicular Films Deposited on Various Seed Layer Material,' IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 6, JUNE 2007. [51] H. N. Bertram and V. L. Safonov, 'The effect of uniaxial quartic anisotropy on thermal stability of magnetic nanograins,' Appl. Phys. Lett., vol. 79, no. 26, pp. 4402–4404, 2001. [52] O.Kitakami,S.Okamoto,N.Kikuchi,andY.Shimada,'Energybarrier enhanced by higher order magnetic anisotropy terms,' Jpn. J. Appl. Phys., vol. 42, no. 5A, pp. L455–457, 2003. [53] Q. Peng and H. J. Richter, 'Analysis of thermal effects in thin-film media,' J. Appl. Phys., vol. 93, no. 10, pp. 7399–7401, 2003. [54] L.Guan,Y.-S.Tang,B.Hu,andJ.-G.Zhu,'Thermalstabilityenhancement of perpendicular media with high-order uniaxial anisotropy,' IEEE Trans. Magn., vol. 40, no. 4, pp. 2579–2581, Jul. 2004. [55] T.Shimatsu,H.Sato,T.Oikawa,K.Mitsuzuka,Y.Inaba,O.Kitakami, S. Okamoto, H. Aoi, H. Muraoka, and Y. Nakamura, 'CoPtCr-SiO perpendicularmediaforhigh densityrecording with ahigh order magnetic anisotropy energy term,' IEEE Trans. Magn., vol. 41, no. 10, pp. 3175–3177, Oct. 2005. [56] T. Oikawa, M. Nakamura, H. Uwazumi, T. Shimatsu, H. Muraoka, and Y. Nakamura, 'Microstructure and magnetic properties of CoPtCr-SiO2 perpendicular recording media,' Magn. IEEE Trans., vol. 38, no. 5, pp. 1976–1978, 2002. [57] H. Uwazumi et al., 'Recording performance of CoCrPt-(Ta,B)/TiCr perpendicular recording media,' IEEE Trans. Magn., vol. 37, no. 4 I, pp. 1595–1598, 2001. [58] H. S. Jung, M. Kuo, E. M. T. Velu, S. S. Malhotra, W. Jiang, and G. Bertero, 'Effect of magnetic recording layer thickness on media performance in CoCrPt-Oxide perpendicular media,' IEEE Trans. Magn., vol. 42, no. 10, pp. 2330–2332, 2006. [59] 引用資料來源網址''. [60] 取自'國立中興大學永續能源與奈米科技研究中心'核心實驗室貴儀。 [61] 引用資料來源網址' microscopy'. [62] 取自'國立中興大學材料系'公共儀器。 [63] 取自'國立中興大學材料系'貴重儀器。 [64] 引用資料來源網址' quantum/bragg.html'. [65] 奈米通訊, '鄧建龍,姚潔宜,張茂男'X光繞射分析在半導體工業上分析應用'nano 通訊 , 2008 , 12 ,15卷, NDL 國家奈米元件實驗室發行,' 奈米通訊, vol. 15, no. 4, 2008. [66] 取自資料來源網址''. [67] B. D. Cullity, 'introduction to magnetic materials', Ch2 ,p. 67-72 (1972). [68] Ian M. Watt, 'The Principles and Practice of Electron Microscopy,' vol 2 , p. 52(2012). [69] L. Tang and D. E. Laughlin, 'Electron Diffraction Patterns of Fibrous and Lamellar Textured Polycrystalline Thin Films. I. Theory,' J. Appl. Crystallogr., vol. 29, no. 4, pp. 411–418, 1996. [70] Milton Ohring 'Materials Science of Thin Films,' Ch 10, p.594-596 (2002). [71] 引用資料來源'Binary Alloy Phase Diagrams'.
本實驗使用直流磁控濺鍍系統,分成兩大部分:第一部份在室溫下鍍著NixPd100-x在Ni62.5Ta37.5合金薄膜上,並依序鍍上Ru及CoCrPt-oxide,目的增強Ru的織構進而使CoCrPt的織構變強,比較NixPd100-x對Ru及CoCrPt的影響。第二部分在CoCrPt中添加8 at% Re, Ru元素及3 at% Re元素,目的是為了藉由添加元素改善記錄層的磁性以及微結構,並提升Hc、Hn、Ku等磁性值。
第一部分在玻璃基板上鍍著膜層結構為CoCrPt(18 nm)/Ru(20 nm)/NiTa(10 nm)之薄膜以及CoCrPt(18 nm)/Ru(20 nm)/NixPd100-x(t nm)/ NiTa(10 nm)之薄膜,NiPd的成分分別為Ni20Pd80、Ni50Pd50、Ni80Pd20,選用與Ru晶格常數相互匹配的中間層材料NixPd100-x鍍著在NiTa合金薄膜上,再改變兩者之厚度(0、5、10和15 nm ),固定CoCrPt、中間層Ru的膜層厚度。從磁滯曲線圖顯示加入Ni20Pd80中間層,垂直繳頑磁力及磁晶異向能,分別為5.4 kOe及3.7*106 erg/cm3;加入Ni50Pd50中間層,垂直繳頑磁力及磁晶異向能,分別為5.7 kOe及4.1*106 erg/cm3;加入Ni80Pd20中間層,垂直繳頑磁力及磁晶異向能,分別為5.7 kOe及4.1*106 erg/cm3,比較NixPd100-x中間層,Ni20Pd80中間層更有效的增強了Ru(0002)織構強度進而增強了CoCrPt(0002)織構強度改善了其磁性◦
第二部分在玻璃基板上製備膜層結構為CoCrPtX(t nm)(X=8 at%Re, Ru)/Ru(20 m)/NiTa(10 nm)以及Co(CrX)Pt(t nm)(X=3 at%Re)/Ru(20 m)/NiW(10 nm)/NiTa(10 nm),改變CoCrPt之膜層厚度(12、15、18和21 nm)。從磁滯曲線圖結果發現在CoCrPt中添加8 at% Re時,垂直矯頑力為5.4 kOe、成核場為2043 Oe、磁晶異向能為3.9*106 erg/cm3;在CoCrPt中添加8 at% Ru時,垂直矯頑力為4.2 kOe、成核場為1255 Oe、磁晶異向能為3.3*106 erg/cm3。相較於添加3 at% Re呈現較高垂直矯頑力為6.1 kOe、磁晶異向能為5.4*106 erg/cm3,從TEM微結構可以看到加入3 at% Re降低了晶粒團簇的現象。

We used a DC magnetron sputtering system in the study. The experiment was divided into two parts. In the first part, we deposited NixPd100-x on Ni62.5Ta37.5 alloy at room temperature, and then sequentially deposited Ru and CoCrPt-oxide. Let the underlying purpose of Ru (0002) peak intensity increased and the texture of CoCrPt becomes stronger and improved vertical anisotropy of magnetic properties, compare the effects of NixPd100-x on Ru and CoCrPt. The second part is to add 8 at% Re, Ru and 3 at% Re elements in CoCrPt. The purpose is to improve the magnetic properties and microstructure of the recording layer by adding elements, and to increase magnetic values such as Hc, Hn, and Ku value.
The first part was CoCrPt(18 nm)/Ru(20 nm)/NiTa(10 nm) of the film and CoCrPt(18 nm)/Ru(20 nm)/NixPd100-x(t nm)/ NiTa(10 nm) of the film. The composition of NiPd is Ni20Pd80, Ni50Pd50, Ni80Pd20 respectively. The lattice constant of NixPd100-x thin film matched with Ru film. And then change the thickness of NixPd100-x (0, 5, 10 and 15 nm), fixed CoCrPt and Ru layer thickness. With Ni20Pd80, illustrates perpendicular magnetic anisotropy with out-of plane coercivity of 5.6 kOe and Ku was 3.9*106 erg/cm3. With Ni50Pd50, illustrates perpendicular magnetic anisotropy with out-of plane coercivity of 3.8 kOe and Ku was 3.2*106 erg/cm3. With Ni80Pd20, illustrates perpendicular magnetic anisotropy with out-of plane coercivity of 3.4 kOe and Ku was 1.8*106 erg/cm3. Comparing NixPd100-x intermediate layer, the Ni20Pd80 intermediate layer enhances the Ru (0002) texture and enhances the CoCrPt (0002) texture to improve its magnetic properties .
The second part was fixed CoCrPtX(t nm)(X=8 at%Re, Ru)/Ru(20 nm)/NiTa(10 nm) of the film and Co(CrX)Pt(t nm)(X=3 at%Re)/Ru(20 nm)/NiW(10 nm)/NiTa(10 nm) of the film, and then change the thickness of CoCrPt (12, 15, 18 and 21 nm). With 8 at% Re in CoCrPt film, the out-of-plane coercivity (Hc) is 5.0 kOe, the nucleation field (Hn) is 2043 Oe and magnetocrystalline anisotropy constant (Ku) is 3.9*106 erg/cm3. With 8 at% Ru in film, the out-of-plane coercivity (Hc) is 4.2 kOe, the nucleation field (Hn) is 1255 Oe and magnetocrystalline anisotropy constant (Ku) is 3.3*106 erg/cm3. As compared to with 3 at% Re in CoCrPt shows higher out-of-plane Hc value of 6.1 kOe and the Ku value of 5.4*106 erg/cm3. From the TEM microstructure could be seen to add the 3 at% Re interface layer, reducing the phenomenon of grain clusters to improve its magnetic properties.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066031-1.pdf7.57 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.