Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorHen-Wen Zhangen_US
dc.identifier.citation[1] S.C. Fernandes, I.C. Vieira, R.A. Peralta, A. Neves, Development of a biomimetic chitosan film-coated gold electrode for determination of dopamine in the presence of ascorbic acid and uric acid, Electrochimica Acta 55(23) (2010) 7152-7157. [2] J. Tang, L. Zhang, Y. Liu, J. Zhou, G. Han, W. Tang, Gold Nanoparticles-β-Cyclodextrin-Chitosan-Graphene Modified Glassy Carbon Electrode for Ultrasensitive Detection of Dopamine and Uric Acid, Electroanalysis 26(9) (2014) 2057-2064. [3] E.J.Louis, H. shirakawa, Alang. G. Maxdiarmid, C. K. Ching, A. J. Heeger, Synthesis of Electrically Conducting Organic Polymers :Halogen Derivatives of Polyacetylene, (CH)x'J.C.S. Chem. Comm. 474 (1997) 578. [4] H.W. Kroto, C60: Buckminsterfullerene',, Nature 318 ,162. [5] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56. [6] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306(5696) (2004) 666. [7] B. Wessling, Dispersion hypothesis and non-equilibrium thermodynamics: key elements for a materials science of conductive polymers. A key to understanding polymer blends or other multiphase polymer systems, Synthetic Metals 45(2) (1991) 119-149. [8] P. Saini, M. Aror, Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes, (2012). [9] S.D.D.V. Rughooputh, M. Nowak, S. Hotta, A.J. Heeger, F. Wudl, Soluble conducting polymers: The poly(3-alkylthienylenes), Synthetic Metals 21(1) (1987) 41-50. [10] 黃桂武, 共軛性導電高分子材料技術簡介, 工業材料雜誌 288 (2010). [11] J.L. Bredas, B. Themans, J.M. Andre, The Role of Mobile Organic Radicals and Ions (Solitons, Polarons and Bipolarons) in the Tranport Properties of Doped Conjugated Polymers, Synthetic Metals (9) (1984) 265 - 274. [12] [13] 吳孟秋, 鎳外層材質對熱塑性聚氨酯-鎳奈米複合材料電性之影響, 中原大學化學系,畢業論文 (2005). [14] 賴正耀, 1,8-萘二胺與苯胺共聚複合膜吸收銅離子濃度與導電率關係, 台北科技大學化學工程學系,畢業論文 (2007). [15] S.P. Armes, Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution, Synthetic Metals 20(3) (1987) 365-371. [16] J. Joo, J.K. Lee, S.Y. Lee, K.S. Jang, E.J. Oh, A.J. Epstein, Physical Characterization of Electrochemically and Chemically Synthesized Polypyrroles, Macromolecules 33(14) (2000) 5131-5136. [17] J. Stejskal, M. Omastová, S. Fedorova, J. Prokeš, M. Trchová, Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study, Polymer 44(5) (2003) 1353-1358. [18] K. Keiji Kanazawa, A.F. Diaz, W.D. Gill, P.M. Grant, G.B. Street, G. Piero Gardini, J.F. Kwak, Polypyrrole: An electrochemically synthesized conducting organic polymer, Synthetic Metals 1(3) (1980) 329-336. [19] P.G. Pickup, R.A. Osteryoung, Electrochemical polymerization of pyrrole and electrochemistry of polypyrrole films in ambient temperature molten salts, Journal of the American Chemical Society 106(8) (1984) 2294-2299. [20] J. Ouyang, Y. Li, Great improvement of polypyrrole films prepared electrochemically from aqueous solutions by adding nonaphenol polyethyleneoxy (10) ether, Polymer 38(15) (1997) 3997-3999. [21] S. Sadki, P. Schottland, N. Brodie, G. Sabouraud, The mechanisms of pyrrole electropolymerization, Chemical Society Reviews 29(5) (2000) 283-293. [22] J. Wang, Y. Xu, J. Wang, X. Du, F. Xiao, J. Li, High charge/discharge rate polypyrrole films prepared by pulse current polymerization, Synthetic Metals 160(17) (2010) 1826-1831. [23] M. Mishra, Conducting Polymers: Biomedical Engineering Applications, Encyclopedia of Biomedical Polymers and Polymeric Biomaterials (2015). [24] Y. Tan, K. Ghandi, Kinetics and mechanism of pyrrole chemical polymerization, Synthetic Metals 175 (2013) 183-191. [25] B.R. Saunders, R.J. Fleming, K.S. Murray, Recent Advances in the Physical and Spectroscopic Properties of Polypyrrole Films, Particularly Those Containing Transition-Metal Complexes as Counteranions, Chemistry of Materials 7(6) (1995) 1082-1094. [26] T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature 358 (1992) 220. [27] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603. [28] M. Scarselli, P. Castrucci, M. De Crescenzi, Electronic and optoelectronic nano-devices based on carbon nanotubes, J Phys Condens Matter 24(31) (2012) 313202. [29] N. Hamada, S. Sawada, A. Oshiyama, New one-dimensional conductors: Graphitic microtubules, Phys Rev Lett 68(10) (1992) 1579-1581. [30] R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules, Applied Physics Letters 60(18) (1992) 2204-2206. [31] J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature 391 (1998) 59. [32] M. Batmunkh, M.J. Biggs, J.G. Shapter, Carbon Nanotubes for Dye-Sensitized Solar Cells, Small 11(25) (2015) 2963-89. [33] M. Ouyang, J.-L. Huang, C.M. Lieber, Fundamental Electronic Properties and Applications of Single-Walled Carbon Nanotubes, Accounts of Chemical Research 35(12) (2002) 1018-1025. [34] M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes, Carbon 33(7) (1995) 883-891. [35] Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene, Science 327(5966) (2010) 662. [36] J.M. Marmolejo-Tejada, J. Velasco-Medina, Review on graphene nanoribbon devices for logic applications, Microelectronics Journal 48 (2016) 18-38. [37] M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, Peculiar Localized State at Zigzag Graphite Edge, Journal of the Physical Society of Japan 65(7) (1996) 1920-1923. [38] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Physical Review B 54(24) (1996) 17954-17961. [39] D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458(7240) (2009) 872-6. [40] N.L. Rangel, J.C. Sotelo, J.M. Seminario, Mechanism of carbon nanotubes unzipping into graphene ribbons, J Chem Phys 131(3) (2009) 031105. [41] J. Campos-Delgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z. Ren, D.J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M.S. Dresselhaus, M. Terrones, Bulk Production of a New Form of sp2 Carbon: Crystalline Graphene Nanoribbons, Nano Letters 8(9) (2008) 2773-2778. [42] T. Kato, R. Hatakeyama, Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars, Nat Nanotechnol 7(10) (2012) 651-6. [43] Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics, Physica E: Low-dimensional Systems and Nanostructures 40(2) (2007) 228-232. [44] A.N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, C. Zhou, Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography, ACS Nano 8(2) (2014) 1538-1546. [45] J. Bai, Y. Huang, Fabrication and electrical properties of graphene nanoribbons, Materials Science and Engineering: R: Reports 70(3-6) (2010) 341-353. [46] Z.-S. Wu, W. Ren, L. Gao, B. Liu, J. Zhao, H.-M. Cheng, Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets, Nano Research 3(1) (2010) 16-22. [47] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 321(5887) (2008) 385. [48] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications 146(9-10) (2008) 351-355. [49] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters 8(3) (2008) 902-907. [50] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-Based Ultracapacitors, Nano Letters 8(10) (2008) 3498-3502. [51] 江偉宏,郭信良, 石墨烯於功能性高分子複合材料的應用, 工業材料雜誌304期 (2012). [52] 何世明、蘇清源, 石墨烯奈米帶的近期發展與應用, 奈米通訊 23 (2016). [53] V. Sharda, R.P. Agarwal, Review of Graphene Nanoribbons, 2014 Recent Advances in Engineering and Computational Sciences (RAECS), 2014, pp. 1-6. [54] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials 6 (2007) 183. [55] D. Knorr, Use of chitinous polymers in food: A challenge for food research and development, v. 38 (1984). [56] S.-i. Aiba, Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans, International Journal of Biological Macromolecules 14(4) (1992) 225-228. [57] M. Rinaudo, M. Milas, P.L. Dung, Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion, International Journal of Biological Macromolecules 15(5) (1993) 281-285. [58] M.N.V.R. Kumar, R.A.A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A.J. Domb, Chitosan Chemistry and Pharmaceutical Perspectives, Chemical Reviews 104(12) (2004) 6017-6084. [59] R.A.A. Muzzarelli, C. Muzzarelli, Chitosan Chemistry: Relevance to the Biomedical Sciences, 186 (2005) 151-209. [60] R.A. Muzzarelli, Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers, Mar Drugs 8(2) (2010) 292-312. [61] H. Honarkar, M. Barikani, Applications of biopolymers I: chitosan, Monatshefte für Chemie - Chemical Monthly 140(12) (2009) 1403-1420. [62] M. Rinaudo, L.D. Pham, M. Milas, A new and simple method of synthesis of carboxymethyl chitosans, Advances in chitin and chitosan, Elsevier1992, pp. 516-525. [63] M. Terbojevich, A. Cosani, R.A.A. Muzzarelli, Molecular parameters of chitosans depolymerized with the aid of papain, Carbohydrate Polymers 29(1) (1996) 63-68. [64] T. Sannan, K. Kurita, Y. Iwakura, Studies on chitin, 2. Effect of deacetylation on solubility, Die Makromolekulare Chemie 177(12) (1976) 3589-3600. [65] S. Hirano, Y. Kondo, K. Fujii, Preparation of acetylated derivatives of modified chito-oligosaccharides by the depolymerisation of partially N-acetylated chitosan with nitrous acid, Carbohydrate Research 144(2) (1985) 338-341. [66] 陳榮輝, 幾丁質、幾丁聚醣的生產製造、檢測與應用, 科學發展月刊 第 29 卷第 10 期. [67] L.W. Chen CS, Tsai GJ., Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster preservation., J. Food Prot., 61 (1998). [68] Y. Xiang, M. Yang, Z. Guo, Z. Cui, Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell, Journal of Membrane Science 337(1) (2009) 318-323. [69] Q. Tian, X.H. Wang, W. Wang, C.N. Zhang, P. Wang, Z. Yuan, Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid, Nanomedicine 8(6) (2012) 870-9. [70] P.F. Pierfrancesco Morganti, Maria Cardillo,Giovanna Donnarumma,Adone Baroni, Chitin Nanofibril and Nanolignin: Natural Polymers of Biomedical Interest, Creative Commons Attribution License, (2017). [71] A. Hadi, Removal of Fe (II) and Zn (II) ions from aqueous solutions by synthesized chitosan, 2016. [72] C. Ziegler, W. Göpel, Biosensor development, Current Opinion in Chemical Biology 2(5) (1998) 585-591. [73] A. Hulanicki, S. Glab, F. Ingman, Chemical sensors: definitions and classification, Pure and Applied Chemistry, 1991, p. 1247. [74] D.R. Thevenot, K. Tóth, R.A. Durst, G.S. Wilson, Electrochemical Biosensors: Recommended Definitions and Classification, Pure and Applied Chemistry, 1999, p. 2333. [75] 許朝鑫, 氧化亞銅/導電高分子/氧化鋅奈米複合 材料於生物感測器之製備, 國立中正大學光機電整合工程研究所,畢業論文(2016). [76] 張志弘, 可攜式恆電位儀與電化學生物感測器之整合研究, 崑山科技大學 電子工程系,畢業論文(2007). [77] C. Clark Leland, C. Lyons, Electrode Systems for Continuous Monitoring in Cardiovascular Surgery, Annals of the New York Academy of Sciences 102(1) (1962) 29-45. [78] 趙辰濤, 電流式尿酸生物感測器之製備及測試, 國立臺灣科技大學化學工程系,畢業論文(2009). [79] M. Mehrvar, M. Abdi, Recent Developments, Characteristics, and Potential Applications of Electrochemical Biosensors, Analytical Sciences 20(8) (2004) 1113-1126. [80] P. D'Orazio, Biosensors in clinical chemistry, Clinica Chimica Acta 334(1-2) (2003) 41-69. [81] K. Kivirand, M. Kagan, T. Rinke, Calibrating Biosensors in Flow-Through Set-Ups: Studies with Glucose Optrodes, (2013). [82] Z. Gao, H. Huang, Simultaneous determination of dopamine, uric acid and ascorbic acid at an ultrathin film modified gold electrode, Chemical Communications (19) (1998) 2107-2108. [83] C.C. Harley, A.D. Rooney, C.B. Breslin, The selective detection of dopamine at a polypyrrole film doped with sulfonated β-cyclodextrins, Sensors and Actuators B: Chemical 150(2) (2010) 498-504. [84] D. Han, T. Han, C. Shan, A. Ivaska, L. Niu, Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosan-Graphene Modified Electrode, Electroanalysis 22(17-18) (2010) 2001-2008. [85] P. Si, H. Chen, P. Kannan, D.H. Kim, Selective and sensitive determination of dopamine by composites of polypyrrole and graphene modified electrodes, Analyst 136(24) (2011) 5134-8. [86] X. Wang, M. Wu, W. Tang, Y. Zhu, L. Wang, Q. Wang, P. He, Y. Fang, Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode, Journal of Electroanalytical Chemistry 695 (2013) 10-16. [87] J. Liu, Z. He, J. Xue, T.T. Yang Tan, A metal-catalyst free, flexible and free-standing chitosan/vacuum-stripped graphene/polypyrrole three dimensional electrode interface for high performance dopamine sensing, J. Mater. Chem. B 2(17) (2014) 2478-2482. [88] Y.-T. Shieh, H.-F. Jiang, Graphene oxide-assisted dispersion of carbon nanotubes in sulfonated chitosan-modified electrode for selective detections of dopamine, uric acid, and ascorbic acid, Journal of Electroanalytical Chemistry 736 (2015) 132-138. [89] C.S. Rao Vusa, V. Manju, K. Aneesh, S. Berchmans, A. Palaniappan, Tailored interfacial architecture of chitosan modified glassy carbon electrodes facilitating selective, nanomolar detection of dopamine, RSC Advances 6(6) (2016) 4818-4825. [90] E. Mazzotta, A. Caroli, E. Primiceri, A.G. Monteduro, G. Maruccio, C. Malitesta, All-electrochemical approach for the assembly of platinum nanoparticles/polypyrrole nanowire composite with electrocatalytic effect on dopamine oxidation, Journal of Solid State Electrochemistry 21(12) (2017) 3495-3504. [91] H.-S. Tsai, Y.-Z. Wang, J.-J. Lin, W.-F. Lien, Preparation and properties of sulfopropyl chitosan derivatives with various sulfonation degree, Journal of Applied Polymer Science (2009) NA-NA. [92] 許峰豪, 本質型導電高分子/石墨烯奈米複合材料之 製備與特性研究, 國立中興大學材料科學與工程學研究所,畢業論文 (2011). [93] S. Palanisamy, K. Thangavelu, S.M. Chen, P. Gnanaprakasam, V. Velusamy, X.H. Liu, Preparation of chitosan grafted graphite composite for sensitive detection of dopamine in biological samples, Carbohydr Polym 151 (2016) 401-407. [94] A.J.B.L.R. Faulkner, ELECTROCHEMICAL METHODS Fundamentals and Applications, (1980). [95] S. Shahrokhian, E. Asadian, Electrochemical determination of l-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron, Journal of Electroanalytical Chemistry 636(1) (2009) 40-46. [96] Y. Li, P. Wang, L. Wang, X. Lin, Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications, Biosensors and Bioelectronics 22(12) (2007) 3120-3125. [97] S. Wang, W. Zhang, X. Zhong, Y. Chai, R. Yuan, Simultaneous determination of dopamine, ascorbic acid and uric acid using a multi-walled carbon nanotube and reduced graphene oxide hybrid functionalized by PAMAM and Au nanoparticles, Analytical Methods 7(4) (2015) 1471-1477. [98] Y.-Y. Ling, Q.-A. Huang, M.-S. Zhu, D.-X. Feng, X.-Z. Li, Y. Wei, A facile one-step electrochemical fabrication of reduced graphene oxide–mutilwall carbon nanotubes–phospotungstic acid composite for dopamine sensing, J. Electroanal. Chem., 693, (2013) 9-15. [99] D. Rao, X. Zhang, Q. Sheng, J. Zheng, Highly improved sensing of dopamine by using glassy carbon electrode modified with MnO2, graphene oxide, carbon nanotubes and gold nanoparticles, Microchimica Acta 183(9) (2016) 2597-2604. [100] C.S. Lee, S.H. Yu, T.H. Kim, One-Step Electrochemical Fabrication of Reduced Graphene Oxide/Gold Nanoparticles Nanocomposite-Modified Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid. , Nanomaterials 8(1) (2018) 17.zh_TW
dc.description.abstract本研究藉由化學法切割奈米碳管制備帶狀奈米石墨烯,並利用原位聚合法使聚吡咯包覆帶狀奈米石墨烯,形成聚吡咯/帶狀奈米石墨烯複合材料,並和幾丁聚醣或磺酸化幾丁聚醣容液混合滴鑄於玻璃碳電極表面形成修飾層,探討修飾電極之電化學表現。 首先,討論聚吡咯/帶狀奈米石墨烯基本性質,藉由傅立葉紅外線光譜儀(FTIR)觀察聚吡咯特徵峰隨帶狀奈米石墨烯添加量改變之情況,再藉由掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)觀察複合材料表面形貌,發現聚吡咯顆粒大小隨帶狀奈米石墨烯添加量增加而下降;在電化學測試部分,分別以幾丁聚醣及磺酸化幾丁聚醣混合聚吡咯/帶狀奈米石墨烯複合材料修飾玻璃碳電極,以循環伏安法(CV)在100mV掃描速率下偵測多巴胺,以幾丁聚醣(CHI)作為固定膜之修飾電極對多巴胺之氧化峰電流值隨帶狀奈米墨烯添加量上升而增加,由聚吡咯(CHI/PPy)的25.44μA上升到帶狀奈米石墨烯添加量5wt%(CHI/5PG)的48.3μA,而磺酸化幾丁聚醣(sCHI)部分則由聚吡咯(sCHI/PPy)的42.5μA上升到sCHI/5PG的67μA,幾丁聚醣經磺酸化後多巴胺氧化電流由原本的48.3μA上升到67μA。 再以微分脈衝伏安法(DPV)觀察多巴胺濃度和電流間關係,CHI/5PG修飾電極在50 -1000 μM的濃度區間內呈現性關係,靈敏度為0.2659 μAcm-2μM-1;sCHI/ 5PG修飾電極之線性範圍為5-500 μM靈敏度為0.8558 μAcm-2μM-1,幾丁聚醣經磺酸化後,偵測多巴胺的靈敏度由原本的0.2659 μAcm-2μM-1上升到0.8558 μAcm-2μM-1增加3倍左右。本研究發現,隨著GNR的添加有助於提升複合材料電化學性質,幾丁聚醣經磺酸化後能有效提高整體修飾電極對多巴胺的氧化還原能力,成功將聚吡咯/帶狀奈米石墨稀複合材料修飾於電極作表面並應用於多巴胺感測。zh_TW
dc.description.tableofcontents目錄 致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1前言 1 1.2研究動機 4 1.3研究方向及目的 5 第二章 文獻回顧 6 2.1 導電高分子 6 2.1.1 導電高分子簡介 6 2.1.2 導電高分子導電機制 10 2.1.3 導電高分子種類 13 2.2 聚吡咯(polypyrrole, Ppy) 15 2.3 奈米碳管(Carbon Nanotubes, CNTs) 19 2.4 帶狀奈米石墨烯 23 2.5 磺酸化幾丁聚醣 35 2.6 感測器(Sensor) 39 2.6.1 感測器簡介 39 2.6.2 感測器定義 41 2.6.3 感測器分類 42 2.7 無機材料/高分子奈米複合材料 46 第三章 實驗方法及步驟 55 3.1 實驗材料 55 3.2 實驗儀器 57 3.3 實驗架構 58 3.4 實驗方法與步驟 59 3.4.1帶狀奈米石墨烯製備 59 3.4.2 帶狀奈米石墨烯/聚吡咯複合材料之製備 61 3.4.3 磺酸化幾丁聚醣之製備 63 3.4.4 幾丁聚醣/聚吡咯/帶狀奈米石墨烯複合材料電極之製備 65 3.4.5 磺酸化幾丁聚醣/聚吡咯/帶狀奈米石墨烯複合材料電極之製備 66 3.5 實驗分析儀器介紹 67 第四章 結果與討論 69 4.1 化學法製備帶狀奈米石墨烯基本性質分析 69 4.2 磺酸化幾丁聚醣基本性質分析 74 4.3聚吡咯/帶狀奈米石墨烯二元複合材料之性質分析 76 4.4 幾丁聚醣/聚吡咯/帶狀奈米石墨烯複合材料之電化學特性探討 82 4.4.1 幾丁聚醣/聚吡咯/帶狀奈米石墨烯之電化學分析 82 4.4.2 掃描速率對多巴胺的影響 83 4.4.3 CHI/5PG奈米複合材料偵測多巴胺及其選擇性 84 4.5 磺酸化幾丁聚醣/聚吡咯/帶狀奈米石墨烯 91 4.5.1 sCHI/5PG奈米複合材料之選擇性 91 4.5.2 磺酸化幾丁聚醣/聚吡咯/帶狀奈米石墨烯之電化學分析 92 4.5.3 交流阻抗分析 93 4.5.4 掃描速率對多巴胺的影響及其靈敏度 93 第五章 結論 103 第六章 參考文獻 105zh_TW
dc.subjectGraphene nanoribbonsen_US
dc.titlePreparation and Characterization of Sulfonated chitosan/ Polypyrrole/ Graphene nanoribbons Nanocompositeen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:材料科學與工程學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7104066066-1.pdf5.82 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.