Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97955
標題: 表面改質多孔二氧化矽/聚吡咯奈米複合材料之製備與性質研究
Preparation and Characterization of Surface modification Porous silica/Polypyrrole Nanocomposites
作者: 劉宇哲
Yu-Che Liu
關鍵字: 聚吡咯;多孔二氧化矽;碳層;電化學感測器;多巴胺;Polypyrrole;Porous silica;Carbon layer;Electrochemical sensor;Dopamine
引用: [1] S. Hou, M. L. Kasner, S. Su, K. Patel, and R. Cuellari, 'Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene,' The Journal of Physical Chemistry C, vol. 114, no. 35, pp. 14915-14921, 2010/09/09 2010. [2] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, 'Electrical Conductivity in Doped Polyacetylene,' Physical Review Letters, vol. 39, no. 17, pp. 1098-1101, 10/24/ 1977. [3] Y. Chai, T. Guo, C. Jin, R. E. Haufler, L. P. F. Chibante, J. Fure, L. Wang, J. M. Alford, and R. E. Smalley, 'Fullerenes with metals inside,' The Journal of Physical Chemistry, vol. 95, no. 20, pp. 7564-7568, 1991/10/01 1991. [4] S. Iijima and T. Ichihashi, 'Single-shell carbon nanotubes of 1-nm diameter,' Nature, vol. 363, p. 603, 06/17/online 1993. [5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, 'Electric Field Effect in Atomically Thin Carbon Films,' Science, 10.1126/science.1102896 vol. 306, no. 5696, p. 666, 2004. [6] D. Pan, J. Zhang, Z. Li, and M. Wu, 'Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots,' Advanced Materials, vol. 22, no. 6, pp. 734-738, 2010. [7] U. Riaz and S. M. Ashraf, 'Chapter 15 - Conductive Polymer Composites and Blends: Recent Trends,' in Nanostructured Polymer BlendsOxford: William Andrew Publishing, 2014, pp. 509-538. [8] P. Si, H. Chen, P. Kannan, and D.-H. Kim, 'Selective and sensitive determination of dopamine by composites of polypyrrole and graphene modified electrodes,' Analyst, vol. 136, no. 24, pp. 5134-5138, 2011. [9] G. Wen, B. Wang, C. Wang, J. Wang, Z. Tian, R. Schlögl, and S. Su Dang, 'Hydrothermal Carbon Enriched with Oxygenated Groups from Biomass Glucose as an Efficient Carbocatalyst,' Angewandte Chemie International Edition, vol. 56, no. 2, pp. 600-604, 2017/01/09 2016. [10] T. A. Skotheim, Handbook of conducting polymers. CRC press, 1997. [11] http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/band.html. [12] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2006. [13] S. Rughooputh, M. Nowak, S. Hotta, A. Heeger, and F. Wudl, 'Soluble conducting polymers: the poly (3-alkylthienylenes),' Synthetic Metals, vol. 21, no. 1-3, pp. 41-50, 1987. [14] R. Ansari, 'Polypyrrole conducting electroactive polymers: synthesis and stability studies,' Journal of Chemistry, vol. 3, no. 4, pp. 186-201, 2006. [15] A. J. Heeger, 'Nobel Lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials,' Reviews of Modern Physics, vol. 73, no. 3, pp. 681-700, 09/20/ 2001. [16] S. Machida, S. Miyata, and A. Techagumpuch, 'Chemical synthesis of highly electrically conductive polypyrrole,' Synthetic metals, vol. 31, no. 3, pp. 311-318, 1989. [17] T. Hernandez-Perez, M. Morales, N. Batina, and M. Salmon, 'Effect of the electrosynthesis method on the surface morphology of the polypyrrole film an atomic force microscopy study,' Journal of the Electrochemical Society, vol. 148, no. 5, pp. C369-C375, 2001. [18] J. Y. Lee and T. C. Tan, 'Cyclic voltammetry of electrodeposition of metal on electrosynthesized polypyrrole film,' Journal of The Electrochemical Society, vol. 137, no. 5, pp. 1402-1408, 1990. [19] M. Zhou and J. Heinze, 'Electropolymerization of pyrrole and electrochemical study of polypyrrole: 1. Evidence for structural diversity of polypyrrole,' Electrochimica Acta, vol. 44, no. 11, pp. 1733-1748, 1999. [20] S. Popli and U. Patel, Electrochemical decolorization of Reactive Black 5 in an undivided cell using Ti and graphite anodes: Effect of polypyrrol coating on anodes. 2015, pp. 145-156. [21] B. R. Saunders, R. J. Fleming, and K. S. Murray, 'Recent advances in the physical and spectroscopic properties of polypyrrole films, particularly those containing transition-metal complexes as counteranions,' Chemistry of materials, vol. 7, no. 6, pp. 1082-1094, 1995. [22] A. F. Diaz, K. K. Kanazawa, and G. P. Gardini, 'Electrochemical polymerization of pyrrole,' Journal of the Chemical Society, Chemical Communications, 10.1039/C39790000635 no. 14, pp. 635-636, 1979. [23] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, 'Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,' Nature, vol. 359, p. 710, 10/22/online 1992. [24] Y. Xin, M. Yin, L. Zhao, F. Meng, and L. Luo, 'Recent progress on nanoparticle-based drug delivery systems for cancer therapy,' Cancer Biology & Medicine, vol. 14, no. 3, pp. 228-241, 04/29/received 05/24/accepted 2017. [25] N. K. Raman, M. T. Anderson, and C. J. Brinker, 'Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas,' Chemistry of Materials, vol. 8, no. 8, pp. 1682-1701, 1996/01/01 1996. [26] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, 'A new family of mesoporous molecular sieves prepared with liquid crystal templates,' Journal of the American Chemical Society, vol. 114, no. 27, pp. 10834-10843, 1992/12/01 1992. [27] T. Y. a. T. S. a. K. K. a. C. Kato, 'The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials,' (in English), Bulletin of the Chemical Society of Japan, vol. 63, pp. 988--992, 1990, Art. no. 4. [28] S. Inagaki, Y. Fukushima, and K. Kuroda, 'Synthesis of highly ordered mesoporous materials from a layered polysilicate,' Journal of the Chemical Society, Chemical Communications, 10.1039/C39930000680 no. 8, pp. 680-682, 1993. [29] Q. Huo, D. I. Margolese, and G. D. Stucky, 'Surfactant control of phases in the synthesis of mesoporous silica-based materials,' Chemistry of Materials, vol. 8, no. 5, pp. 1147-1160, 1996. [30] 林靜儀, '中孔洞二氧化矽奈米顆粒的合成與鑑定,' 碩士, 化學系, 國立清華大學, 新竹市, 2007. [31] Q. Cai, Z.-S. Luo, W.-Q. Pang, Y.-W. Fan, X.-H. Chen, and F.-Z. Cui, 'Dilute Solution Routes to Various Controllable Morphologies of MCM-41 Silica with a Basic Medium,' Chemistry of Materials, vol. 13, no. 2, pp. 258-263, 2001/02/01 2001. [32] F. Hoffmann, M. Cornelius, J. Morell, and M. Fröba, 'Silica‐based mesoporous organic–inorganic hybrid materials,' Angewandte Chemie International Edition, vol. 45, no. 20, pp. 3216-3251, 2006. [33] P. C. Bakala, E. Briot, L. Salles, and J.-M. Brégeault, 'Comparison of liquid-phase olefin epoxidation over MoOx inserted within mesoporous silica (MCM-41, SBA-15) and grafted onto silica,' Applied Catalysis A: General, vol. 300, no. 2, pp. 91-99, 2006. [34] C. Knöfel, J. Descarpentries, A. Benzaouia, V. Zeleňák, S. Mornet, P. Llewellyn, and V. Hornebecq, 'Functionalised micro-/mesoporous silica for the adsorption of carbon dioxide,' Microporous and Mesoporous Materials, vol. 99, no. 1-2, pp. 79-85, 2007. [35] S. Mikhailenko, D. Desplantier-Giscard, C. Danumah, and S. Kaliaguine, 'Solid electrolyte properties of sulfonic acid functionalized mesostructured porous silica,' Microporous and mesoporous materials, vol. 52, no. 1, pp. 29-37, 2002. [36] A. Vinu, K. Z. Hossain, and K. Ariga, 'Recent advances in functionalization of mesoporous silica,' Journal of Nanoscience and Nanotechnology, vol. 5, no. 3, pp. 347-371, 2005. [37] M. Guidotti, N. Ravasio, R. Psaro, E. Gianotti, S. Coluccia, and L. Marchese, 'Epoxidation of unsaturated FAMEs obtained from vegetable source over Ti (IV)-grafted silica catalysts: A comparison between ordered and non-ordered mesoporous materials,' Journal of Molecular Catalysis A: Chemical, vol. 250, no. 1-2, pp. 218-225, 2006. [38] M. Manzano, V. Aina, C. Arean, F. Balas, V. Cauda, M. Colilla, M. Delgado, and M. Vallet-Regi, 'Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization,' Chemical Engineering Journal, vol. 137, no. 1, pp. 30-37, 2008. [39] M. Mureseanu, A. Reiss, I. Stefanescu, E. David, V. Parvulescu, G. Renard, and V. Hulea, 'Modified SBA-15 mesoporous silica for heavy metal ions remediation,' Chemosphere, vol. 73, no. 9, pp. 1499-1504, 2008. [40] S. Oh and K. Kim, 'Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors,' Chemical Communications, no. 21, pp. 2177-2178, 1999. [41] D. R. Radu, C.-Y. Lai, J. W. Wiench, M. Pruski, and V. S.-Y. Lin, 'Gatekeeping layer effect: A poly (lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino-containing neurotransmitters,' Journal of the American Chemical Society, vol. 126, no. 6, pp. 1640-1641, 2004. [42] Y. Liu, J. Chen, J. Yao, Y. Lu, L. Zhang, and X. Liu, 'Preparation and properties of sulfonated carbon–silica composites from sucrose dispersed on MCM-48,' Chemical Engineering Journal, vol. 148, no. 1, pp. 201-206, 2009/05/01/ 2009. [43] Q. Cheng, V. Pavlinek, C. Li, A. Lengalova, Y. He, and P. Saha, 'Synthesis and characterization of new mesoporous material with conducting polypyrrole confined in mesoporous silica,' Materials Chemistry and Physics, vol. 98, no. 2, pp. 504-508, 2006/08/01/ 2006. [44] H. Guo, M. Wang, L. Zhao, N. Youliwasi, and C. Liu, 'The effect of Co and N of porous carbon-based materials fabricated via sacrificial templates MOFs on improving DA and UA electrochemical detection,' Microporous and Mesoporous Materials, vol. 263, pp. 21-27, 2018/06/01/ 2018. [45] R. Gupta and V. Ganesan, 'Gold nanoparticles impregnated mesoporous silica spheres for simultaneous and selective determination of uric acid and ascorbic acid,' Sensors and Actuators B: Chemical, vol. 219, pp. 139-145, 2015/11/01/ 2015. [46] A. Hirsch, 'The era of carbon allotropes,' Nature materials, vol. 9, no. 11, p. 868, 2010. [47] S. Tiwari, V. Kumar, A. Huczko, R. Oraon, A. De Adhikari, and G. Nayak, Magical Allotropes of Carbon: Prospects and Applications. 2015. [48] L. M. Hanssen, K. Snail, W. Carrington, J. Butler, S. Kellogg, and D. Oakes, 'Diamond and non-diamond carbon synthesis in an oxygen-acetylene flame,' Thin Solid Films, vol. 196, no. 2, pp. 271-281, 1991. [49] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, and C. B. Huffman, 'Fullerene pipes,' Science, vol. 280, no. 5367, pp. 1253-1256, 1998. [50] J. Robertson, 'Diamond-like amorphous carbon,' Materials Science and Engineering: R: Reports, vol. 37, no. 4, pp. 129-281, 2002/05/24/ 2002. [51] J. Robertson, 'Amorphous carbon,' Advances in Physics, vol. 35, no. 4, pp. 317-374, 1986/01/01 1986. [52] Y. Gong, D. Li, Q. Fu, and C. Pan, Influence of graphene microstructures on electrochemical performance for supercapacitors. 2015. [53] B. Unnikrishnan, S. Palanisamy, and S.-M. Chen, 'A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite,' Biosensors and Bioelectronics, vol. 39, no. 1, pp. 70-75, 2013/01/15/ 2013. [54] M. Nurunnabi, Z. Khatun, K. M. Huh, S. Y. Park, D. Y. Lee, K. J. Cho, and Y.-k. Lee, 'In Vivo Biodistribution and Toxicology of Carboxylated Graphene Quantum Dots,' ACS Nano, vol. 7, no. 8, pp. 6858-6867, 2013/08/27 2013. [55] H. Sun, L. Wu, W. Wei, and X. Qu, 'Recent advances in graphene quantum dots for sensing,' Materials Today, vol. 16, no. 11, pp. 433-442, 2013/11/01/ 2013. [56] J. Zhao, G. Chen, L. Zhu, and G. Li, 'Graphene quantum dots-based platform for the fabrication of electrochemical biosensors,' Electrochemistry Communications, vol. 13, no. 1, pp. 31-33, 2011/01/01/ 2011. [57] D. Pan, J. Zhang, Z. Li, and M. Wu, 'Hydrothermal Route for Cutting Graphene Sheets into Blue‐Luminescent Graphene Quantum Dots,' Advanced Materials, vol. 22, no. 6, pp. 734-738, 2010. [58] J. Zhang, Y.-q. Ma, N. Li, J.-l. Zhu, T. Zhang, W. Zhang, and B. Liu, 'Preparation of Graphene Quantum Dots and Their Application in Cell Imaging,' Journal of Nanomaterials, vol. 2016, p. 9, 2016, Art. no. 9245865. [59] Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, and L. Qu, 'Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups,' Journal of the American Chemical Society, vol. 134, no. 1, pp. 15-18, 2012/01/11 2012. [60] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, and S. P. Lau, 'Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots,' ACS Nano, vol. 6, no. 6, pp. 5102-5110, 2012/06/26 2012. [61] M. Shehab, S. Ebrahim, and M. Soliman, 'Graphene quantum dots prepared from glucose as optical sensor for glucose,' Journal of Luminescence, vol. 184, pp. 110-116, 2017/04/01/ 2017. [62] Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, and G. Chen, 'Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid,' Carbon, vol. 50, no. 12, pp. 4738-4743, 2012/10/01/ 2012. [63] L. C. Clark and C. Lyons, 'ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY,' Annals of the New York Academy of Sciences, vol. 102, no. 1, pp. 29-45, 1962. [64] F. W. Scheller, F. Schubert, B. Neumann, D. Pfeiffer, R. Hintsche, I. Dransfeld, U. Wollenberger, R. Renneberg, A. Warsinke, G. Johansson, M. Skoog, X. Yang, V. Bogdanovskaya, A. Bückmann, and S. Y. Zaitsev, 'Second generation biosensors,' Biosensors and Bioelectronics, vol. 6, no. 3, pp. 245-253, 1991/01/01/ 1991. [65] N. R. Stradiotto, H. Yamanaka, and M. V. B. Zanoni, 'Electrochemical sensors: a powerful tool in analytical chemistry,' Journal of the Brazilian Chemical Society, vol. 14, pp. 159-173, 2003. [66] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: fundamentals and applications. wiley New York, 1980. [67] 王彥棋, '探討表面修飾網版印刷碳膠電極在電化學特性影響,' 碩士, 生物科技系所, 國立交通大學, 新竹市, 2007. [68] 'Biosensors: Potentiometric and Amperometric,' Analytical Chemistry, vol. 59, no. 18, pp. 1091A-1098A, 1987/09/15 1987. [69] D. S. Austin‐Harrison and D. C. Johnson, 'Pulsed amperometric detection based on direct and indirect anodic reactions: A review,' Electroanalysis, vol. 1, no. 3, pp. 189-197, 1989. [70] J. Njagi, M. M. Chernov, J. C. Leiter, and S. Andreescu, 'Amperometric Detection of Dopamine in Vivo with an Enzyme Based Carbon Fiber Microbiosensor,' Analytical Chemistry, vol. 82, no. 3, pp. 989-996, 2010/02/01 2010. [71] S. Bouakkaz, R. Zerdoumi, K. Oulmi, D. Mellahi, and G. M. Andreadis, 'Electrochemical Study of Penicillin-G as a Corrosion Inhibitor for Fe-19Cr Stainless Steel in Hydrochloric Acid,' Portugaliae Electrochimica Acta, vol. 35, pp. 211-224, 2017. [72] B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media, 2013. [73] K. Blum, A. L. Chen, J. Giordano, J. Borsten, T. J. Chen, M. Hauser, T. Simpatico, J. Femino, E. R. Braverman, and D. Barh, 'The addictive brain: all roads lead to dopamine,' Journal of psychoactive drugs, vol. 44, no. 2, pp. 134-143, 2012. [74] T. Łuczak, 'Electrochemical Oxidation of Dopamine in the Presence of Secondary Amine. An Alternative Way for Quantitative Dopamine Determination at a Gold Electrode,' Electroanalysis, vol. 20, no. 15, pp. 1639-1646, 2008. [75] M. D. Hawley, S. V. Tatawawadi, S. Piekarski, and R. N. Adams, 'Electrochemical Studies of the Oxidation Pathways of Catecholamines,' Journal of the American Chemical Society, vol. 89, no. 2, pp. 447-450, 1967/01/01 1967. [76] S. R. Ali, R. R. Parajuli, Y. Ma, Y. Balogun, and H. He, 'Interference of Ascorbic Acid in the Sensitive Detection of Dopamine by a Nonoxidative Sensing Approach,' The Journal of Physical Chemistry B, vol. 111, no. 42, pp. 12275-12281, 2007/10/01 2007. [77] L. Yang, D. Liu, J. Huang, and T. You, 'Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode,' Sensors and Actuators B: Chemical, vol. 193, pp. 166-172, 2014/03/31/ 2014. [78] H.-M. So, K. Won, Y. H. Kim, B.-K. Kim, B. H. Ryu, P. S. Na, H. Kim, and J.-O. Lee, 'Single-Walled Carbon Nanotube Biosensors Using Aptamers as Molecular Recognition Elements,' Journal of the American Chemical Society, vol. 127, no. 34, pp. 11906-11907, 2005/08/01 2005. [79] T. Gan, J. Sun, W. Wu, K. Huang, and J. Zhu, 'Electrochemical Determination of Dopamine Using a Mesoporous MnO2/Polypyrrole-Modified Electrode,' Nanoscience and Nanotechnology Letters, vol. 5, no. 6, pp. 673-676, // 2013. [80] Q. Huang, S. Hu, H. Zhang, J. Chen, Y. He, F. Li, W. Weng, J. Ni, X. Bao, and Y. Lin, 'Carbon dots and chitosan composite film based biosensor for the sensitive and selective determination of dopamine,' Analyst, vol. 138, no. 18, pp. 5417-5423, 2013. [81] T. Qian, C. Yu, S. Wu, and J. Shen, 'In situ polymerization of highly dispersed polypyrrole on reduced graphite oxide for dopamine detection,' Biosensors and Bioelectronics, vol. 50, pp. 157-160, 2013/12/15/ 2013. [82] M. R. Mahmoudian, W. J. Basirun, and Y. Binti Alias, 'Sensitive Dopamine Biosensor Based on Polypyrrole-Coated Palladium Silver Nanospherical Composites,' Industrial & Engineering Chemistry Research, vol. 55, no. 25, pp. 6943-6951, 2016/06/29 2016. [83] A. Daniel Arulraj, A. Arunkumar, M. Vijayan, K. Balaji Viswanath, and V. S. Vasantha, 'A simple route to Develop Highly porous Nano Polypyrrole/Reduced Graphene Oxide Composite film for Selective Determination of Dopamine,' Electrochimica Acta, vol. 206, pp. 77-85, 2016/07/10/ 2016. [84] R. Zhou, H. Wei, C. Yong, Z. Kexi, C. Yang, and T. Jinchun, 'Facile synthesis of graphene/polypyrrole 3D composite for a high-sensitivity non-enzymatic dopamine detection,' Journal of Applied Polymer Science, vol. 134, no. 29, p. 44840, 2017. [85] H. Beitollahi, F. G. Nejad, and S. Shakeri, 'GO/Fe 3 O 4@ SiO 2 core–shell nanocomposite-modified graphite screen-printed electrode for sensitive and selective electrochemical sensing of dopamine and uric acid,' Analytical Methods, vol. 9, no. 37, pp. 5541-5549, 2017. [86] Y. D. Glinka and M. Jaroniec, 'Spontaneous and Stimulated Raman Scattering from Surface Phonon Modes in Aggregated SiO2 Nanoparticles,' The Journal of Physical Chemistry B, vol. 101, no. 44, pp. 8832-8835, 1997/10/01 1997. [87] Y. Yang, Y. Ding, T. Cheng, Y. Gao, Y. Li, D. Chen, J. Liu, and X. Fang, 'Hydrothermal Growth and Electrochemical Performance of Carbon-Coated Porous SnO2 Nanospheres,' Journal of Nanoscience and Nanotechnology, vol. 18, no. 10, pp. 7058-7063, // 2018. [88] D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang, and Y. Ma, 'Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors,' Journal of Power Sources, vol. 196, no. 14, pp. 5990-5996, 2011/07/15/ 2011. [89] H. P. de Oliveira, S. A. Sydlik, and T. M. Swager, 'Supercapacitors from Free-Standing Polypyrrole/Graphene Nanocomposites,' The Journal of Physical Chemistry C, vol. 117, no. 20, pp. 10270-10276, 2013/05/23 2013. [90] K. Ghanbari and N. Hajheidari, 'Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using silver nanoparticles deposited on polypyrrole nanofibers,' Journal of Polymer Research, journal article vol. 22, no. 8, p. 152, July 18 2015. [91] E. Mazzotta, A. Caroli, E. Primiceri, A. G. Monteduro, G. Maruccio, and C. Malitesta, 'All-electrochemical approach for the assembly of platinum nanoparticles/polypyrrole nanowire composite with electrocatalytic effect on dopamine oxidation,' Journal of Solid State Electrochemistry, journal article vol. 21, no. 12, pp. 3495-3504, November 01 2017. [92] C.-Y. Lee, D.-Y. Hsu, A. Prasannan, R. Kalaivani, and P.-D. Hong, 'Facile synthesis of hexagonal-shaped polypyrrole self-assembled particles for the electrochemical detection of dopamine,' Applied Surface Science, vol. 363, pp. 451-458, 2016/02/15/ 2016. [93] Z. Guo, X. Luo, Y. Li, D. Li, Q. Zhao, M. Li, C. Ma, and Y. Zhao, 'Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid based on reduced graphene oxide-Ag/PANI modified glassy carbon electrode,' Chemical Research in Chinese Universities, journal article vol. 33, no. 3, pp. 507-512, June 01 2017.
摘要: 
本研究以溶凝膠法製備多孔結構之二氧化矽(MCM-41)奈米顆粒,以葡萄糖作為碳來源,以水熱法在多孔二氧化矽之表面形成碳層稱為MC,經過550度熱處理稱為MC*。以原位聚合法將相對於吡咯單體不同重量之MC*形成MC*/PPy奈米複合材料,以SEM及TEM觀察PPy、MC*、MC*/PPy奈米複合材料的表面形貌,透過循環伏安法和微分脈衝伏安法研究PPy、MC*、MC*/PPy奈米複合材料的電化學行為
不同比例的MC*/PPy奈米複合材料,由SEM可觀察到複合材料顆粒大小隨添加量上升而減小。以循環伏安法掃描速率50mV/s偵測1mM多巴胺的氧化峰電流值由純聚吡咯的25μA增加至添加5wt%MC*的38μA,等效串聯電阻(ESR)由純聚吡咯之57.9Ω下降至5wt%添加量之35.3Ω達最小值,顯示添加MC*能夠降低阻抗值,因為表面積的提高及MC*好的電子傳遞能力。
使用5MC*P感測抗壞血酸、多巴胺、尿酸,以微分脈衝伏安法探討5MC*P修飾電極偵測多巴胺的表現,顯示線性範圍為1-200μM,偵測極限(S/N=3)為0.7μM,純聚吡咯及複合材料5MC*P存放於室溫,七天後偵測多巴胺,維持初始電流響應的83%,除此之外,5MC*P修飾電極可區別多巴胺(DA)、抗壞血酸(AA)、尿酸(UA)的氧化電位。AA和DA氧化電位差為153mV、DA和UA的氧化電位差為142mV、AA和UA的氧化電位差為293mV。

In this study, the porous SiO2 (MCM-41) nanoparticle were prepared by sol-gel method. Carbon layer obtained from glucose was formed on the surface of porous SiO2 by hydrothermal method (MC).The porous MC was further thermal treated at 550°C (assigned by MC*). The MC*/PPy nanocomposites were synthesized by in-situ polymerization with different weight ratios of pyrrole monomer and MC*.The morphologies of the PPy、MC*、MC*/PPy nanocomposites were characterized through SEM and TEM. Electrochemical behavior of the PPy、MC*、MC*/PPy nanocomposites were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV).
For the different ratio of MC*/PPy nanocomposite system, the particle size of PPy was measured by SEM images and was gradually decreased with increasing the loading of MC*. The peak current of PPy increases from 25μA to 38μA with 5wt% MC* content (5MC*P) at a scan rate 50mV/s. The impedance value of PPy, 5MC*P were 57.9 Ω and 35.3Ω, respectively. Obviously, the addition of MC* can reduce the impedance value due to the increase of the surface area and good conductivity of MC*.
For 5MC*P composite, the linear range of electrochemical response in dopamine (DA) was 1-200μM and the detection limit was 0.7μM (S/N=3). After 7 days of 5MC*P stored at room temperature, the initial current response remained 83%. In addition, 5MC*P-modified electrode was also detected with dopamine, ascorbic acid and uric acid. The electrochemical potential differences among the three detected peaks were 151 mV (AA to DA), 142 mV (DA to UA) and 293 mV (AA and UA), respectively.
URI: http://hdl.handle.net/11455/97955
Rights: 同意授權瀏覽/列印電子全文服務,2021-09-26起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066029-1.pdf5.66 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.