Please use this identifier to cite or link to this item:
標題: 超音波震盪噴霧熱解法製備次微米金屬/金屬氧化物顆粒及其性質
Synthesis and characterization of submicron metal and metal oxide particles using ultrasonic thermal spray pyrolysis
作者: 鄭吉男
Ji-Nan Cheng
關鍵字: 超音波震盪噴霧熱解法;次微米;伽凡尼氧化;ultrasonic thermal spray pyrolysis;submicron;galvanic oxidation
引用: 1. Wiley, B., Y. Sun, and Y. Xia, Synthesis of Silver Nanostructures with Controlled Shapes and Properties. Accounts of chemical research, 2007. 40(10): p. 1067-1076. 2. Jeon, S.J., S.M. Koo, and S.A. Hwang, Optimization of lead- and cadmium-free front contact silver paste formulation to achieve high fill factors for industrial screen-printed Si solar cells. Solar Energy Materials & Solar Cells, 2009. 93: p. 1103-1109. 3. Wang, S., D.S. Pang, and D.D.L. Chung, Hygrothermal Stability of Electrical Contacts Made from Silver and Graphite Electrically Conductive Pastes. Electronic Materials, 2007. 36(1). 4. Rashid, M.H. and T.K. Mandal, Synthesis and Catalytic Application of Nanostructured Silver Dendrites. J. Phys. Chem. C, 2007. 111(45): p. 16750-16760. 5. Crone, B.K., A. Dodabalapur, R. Sarpeshkar, R.W. Filas, Y.-Y. Lin, Z. Bao, J.H. O'Neill, W. Li, and H.E. Katz, Design and fabrication of organic complementary circuits. Journal of Applied Physics, 2001. 89(9): p. 5125-5132. 6. Hoey, J.M., M.T. Reich, A. Halvorsen, D. Vaselaar, K. Braaten, M. Maassel, I.S. Akhatov, O. Ghandour, P. Drzaic, and D.L. Schulz, Rapid Prototyping RFID Antennas Using Direct-Write. IEEE Transactions on Advanced Packaging, 2009. 32(4): p. 809-815. 7. Majumdar, D., H.D. Glicksman, and T.T. Kodas, Generation and sintering characteristics of silver–copper(II) oxide composite powders made by spray pyrolysis. Powder Technology, 2000. 110: p. 76-81. 8. Dingreville, R., J. Qu, and M. Cherkaoui, Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. Journal of the Mechanics and Physics of Solids, 2005. 53: p. 1827-1854. 9. Zhou, H.S., I. Honma, H. Komiyama, and J.W. Haus, Controlled synthesis and quantum-size efFect in gold-coated nanoparticles. Physical Review B, 1994. 50(16): p. 12052-12056. 10. Basit, H., A. Pal, S. Sen, and S. Bhattacharya, Two-Component Hydrogels Comprising Fatty Acids and Amines: Structure, Properties, and Application as a Template for the Synthesis of Metal Nanoparticles. Chem. Eur. J., 2008. 14: p. 6534 – 6545. 11. Kelly, K.L., E. Coronado, L.L. Zhao, and G.C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and 62 Dielectric Environment. J. Phys. Chem. B, 2003. 107(3): p. 668-677. 12. Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26: p. 3995-4021. 13. Pankhurst, Q.A., J. Connolly, S.K. Jones, and J. Dobson, Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 2003. 36: p. R167-R181. 14. Panacek, A., L. Kvıtek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V.K. Sharma, T. Nevecna, and R. Zboril, Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B, 2006. 110(33): p. 16248-16253. 15. Fuller, S.B., E.J. Wilhelm, and J.M. Jacobson, Ink-Jet Printed Nanoparticle Microelectromechanical Systems. Journal of Microelectromechanical Systems, 2002. 11(1): p. 54-60. 16. Umarji, G.G., S.A. Ketkar, G.J. Phatak, T. Seth, U.P. Mulik, and D.P. Amalnerkar, Photoimageable silver paste for high density interconnection technology. Materials Letters, 2005. 59: p. 503-509. 17. Kim, D., S. Jeong, S. Lee, B.K. Park, and J. Moon, Organic thin film transistor using silver electrodes by the ink-jet printing technology. Thin Solid Films, 2007. 515: p. 7692-7696. 18. Shi, C.W.P., X. Shan, G. Tarapata, R. Jachowicz, J. Weremczuk, and H.T. Hui, Fabrication of wireless sensors on flexible film using screen printing and via filling. Microsyst Technol, 2011. 17: p. 661-667. 19. Allen, G.L., R.A. Bayles, W.W. Gile, and W.A. Jesser, Small Particle Melting of Pure Metals. Thin Solid Films, 1986. 144: p. 297-308. 20. Daw, M.S. and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical review B, 1984. 29(12): p. 6443-6453. 21. Daw, M.S. and M.I. Baskes, Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Physical review letters, 1983. 50(17): p. 1285-1288. 22. Moon, K.-S., H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C.P. Wong, Thermal Behavior of Silver Nanoparticles for Low-Temperature Interconnect Applications. Journal of Electronic Materials, 2005. 34(2): p. 168-175. 23. Knoerr, M. and A. Schletz, Power Semiconductor Joining through Sintering of Silver Nanoparticles: Evaluation of Influence of Parameters Time, Temperature and Pressure on Density, Strength and Reliability, inCIPS. 2010: Nuremberg/Germany. 24. Sosa, Y.D., M. Rabelero, M.E. Trevino, H. Saade, and R.G. Lopez, High-Yield Synthesis of Silver Nanoparticles by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion. Journal of Nanomaterials, 2010. 25. Manno, D., E. Filippo, M.D. Giulio, and A. Serra, Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications. Journal of Non-Crystalline Solids, 2008. 354: p. 5515–5520. 26. Parvulescu, V.I., B. Cojocaru, V. Parvulescu, R. Richards, Z. Li, C. Cadigan, P. Granger, P. Miquel, and C. Hardacre, Sol-gel-entrapped nano silver catalysts-correlation between active silver species and catalytic behavior. Journal of Catalysis, 2010. 272: p. 92-100. 27. Durucan, B.A.C., Preparation and microstructure of sol-gel derived silver-doped silica. J Sol-Gel Sci Technol, 2007. 43: p. 227-236. 28. 簡伊辰, 一階段製備奈米結構銀顆粒及其特性量測. 2013, 國立台灣科技大學材料科學與工程研究所. 29. Nascu, C., I. Pop, V. Ionescu, E. Indrea, and I. Bratu, Spray pyrolysis deposition of CuS thin films. Materials Letters, 1997. 32: p. 73-77. 30. Messing, G.L., S.-C. Zhang, and G.V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726. 31. Kraemeri, H.F. and H.F. Johnstone, Collection of Aerosol Particles in Presence of Electrostatic Fields. Industrial and engineering chemistry 1955. 47(45): p. 2426-2434. 32. Jung, D.S., H.Y. Koo, and Y.C. Kang, Electrical and morphological properties of conducting layers formed from the silver–glass composite conducting powders prepared by spray pyrolysis. Journal of Colloid and Interface Science, 2010. 343: p. 1-6. 33. Pingali, K.C., D.A. Rockstraw, and S. Deng, Silver Nanoparticles from Ultrasonic Spray Pyrolysis of Aqueous Silver Nitrate. Aerosol Science and Technology, 2005. 39(10): p. 1010-1014. 34. Shi, X., ShengWang, X. Duan, and Q. Zhang, Synthesis of nano Ag powder by template and spray pyrolysis technology. Materials Chemistry and Physics, 2008. 112: p. 1110-1113. 35. Shih, S.-J. and I.-C. Chien, Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder Technology, 2013. 237: p. 436-441. 64 36. Lee, K.H., S.C. Rah, and S.-G. Kim, Formation of monodisperse silver nanoparticles in poly(vinylpyrrollidone) matrix using spray pyrolysis. J Sol-Gel Sci Technol, 2008. 45: p. 187-193. 37. Okuyama, E., Preparation of Micro-Controlled Particles Using Aerosol Process. J. Aerosol Sci., 1991. 22: p. S7-S10. 38. Clement, C.F. and I.J. Ford, Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts. Atmospheric Environment, 1999. 33: p. 489-499. 39. Lu, H., Fabrication and characterization of porous silver powder prepared by spray drying and calcining technology. Powder Technology, 2010. 203: p. 176-179. 40. Ahn, K.W., J.Y. Lim, J.H. Yang, and S.-G. Kim, In situ growth of silver nanoparticles in mesoporous silica by spray pyrolysis. J Nanopart Res, 2010. 12: p. 2457-2465. 41. Suren, S., W. Limkitnuwat, P. Benjapongvimon, and S. Kheawhom, Conductive film by spray pyrolysis of self-reducing copper–silver amine complex solution. Thin Solid Films, 2016. 607: p. 36-42. 42. Koo, H.Y., J.H. Kim, S.K. Hong, J.M. Han, Y.N. Ko, Y.C. Kang, S.H. Kang, and S.B. Cho, Characteristics of Fe Powders Prepared by Spray Pyrolysis from Various Types of Fe Precursors as a Heat Pellet Material. Met. Mater. Int., 2010. 16(6): p. 941-946. 43. Koo, H.Y., J.H. Kim, S.K. Hong, Y.N. Ko, H.C. Jang, D.S. Jung, J.M. Han, Y.J. Hong, Y.C. Kang, S.H. Kang, and S.B. Cho, Characteristics of Fe Powders Prepared by Spray Pyrolysis from a Spray Solution with Ethylene Glycol as the Source Material of Heat Pellet. Met. Mater. Int., 2012. 18(3): p. 445-449. 44. Zielinski, J., I. Zglinicka, L. Znak, and Z. Kaszkur, Reduction of Fe2O3 with hydrogen. Applied Catalysis A: General, 2010. 381: p. 191-196. 45. Yang, S.-Y. and S.-G. Kim, Characterization of silver and silver/nickel composite particles prepared by spray pyrolysis. Powder Technology, 2004. 146: p. 185-192. 46. Ebin, B., E. Yazici, and S. Gurmen, Production of nanocrystalline silver particles by hydrogen reduction of silver nitrate aerosol droplets. Transactions of Nonferrous Metals Society of China, 2013. 23: p. 841-848. 47. Zheng, R., X. Guo, and H. Fu, One-step, template-free route to silver porous hollow spheres and their optical property. Applied Surface Science, 2011. 257: p. 2367-2370. 48. Pluym, T.C., Q.H. Powell, A.S. Gurav, T.L. Ward, T.T. Kodas, L.M. Wang, and H.O.G. II, Solid Silver Particle Production by Spray Pyrolysis. J. Aerosol Sci., 1993. 24(3): p. 383-392. 49. Kieda, N. and G.L. Messing, Preparation of silver particles by spray pyrolysis of silver-diammine complex solutions. Journal of Materials Research, 1998. 13(6): p. 1660-1665. 50. Park, S.-I., J.-H. Ahn, X. Feng, S. Wang, Y. Huang, and J.A. Rogers, Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates. Advanced Functional Materials, 2008. 18: p. 2673-2684. 51. Azam, A., A.S. Ahmed, M. Oves, M. Khan, and A. Memic, Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. International Journal of Nanomedicine 2012. 7: p. 3527-3535. 52. Radhakrishnan, A.A. and B.B. Beena, Structural and Optical Absorption Analysis of CuO Nanoparticles Indian Journal of Advances in Chemical Science 2014. 2(2): p. 158-161. 53. Ishikawa, K., T. Yagishita, and M. Nakamura, Vapor Treatment of Copper Surface Using Organic Acids, in Materials Research Society. 2003. p. E3.28. 54. Liu, X., J. Ruiz, and D. Astruc, Prevention of aerobic oxidation of copper nanoparticles by anti-galvanic alloying: gold versus silver. Chem. Commun., 2017. 53: p. 11134-11137.
超音波噴霧熱解法為一快速連續製作奈米級粉末之製程。本研究利用該製程一步驟製備次微米銀、銀/氧化銅,以及中空氧化鐵顆粒。製備次微米銀及銀/氧化銅複合顆粒之目的在於發展其電子導線之應用,並探討其燒結性質及電性;製備中空氧化鐵之目的為結合後續還原處理之開發,嘗試製備次微米級中空鐵球。次微米銀顆粒方面,裂解溫度較低的醋酸銀取代常用的硝酸銀作為前驅物,開發低溫製程。結果顯示,在一臨界溫度(350 oC)以上進行噴霧煅燒,醋酸銀可完全還原成銀顆粒。經塗佈次微米銀漿料以100 oC或250 oC於大氣燒結形成導電電路後,慮及車用電子與軟板元件之應用,以固定電壓(12V)對線路進行荷電獲得臨界燒斷電流,並於高分子基板製作導線進行反覆彎曲測試來評估可靠度。次微米銀/銅複合顆粒之前驅物則採用醋酸銀及醋酸銅混合物,製備漿料後於150 oC或250 oC以還原氣氛將銀/氧化銅粉末還原並同時燒結成銀/銅膜。發現於900 oC噴霧煅燒並於250 oC還原燒結可獲得最低電阻率70 μΩ⋅cm。銀/氧化銅顆粒之銀/氧化銅兩相分佈形貌及其燒結體之抗氧化性與電阻率受到煅燒溫度影響甚大。實驗結果顯示噴霧煅燒溫度超過銀熔點以上者迅速氧化因而具有較差導電率,本研究藉以提出伽凡尼氧化效應予以解釋。中空鐵顆粒則於氯化鐵及氯化亞鐵前驅物溶液中添加甘胺酸,於550 oC噴霧煅燒溫度條件成功獲得中空氧化鐵,於N2-10%H2氣氛下500 oC還原可完全還原成純鐵,但由於還原過程中各氧化鐵相與純鐵的莫爾體積變化過大,導致收縮碎裂。大幅降低還原熱處理升、降溫速率,收縮碎裂情形可獲得改善。

Ultrasonic thermal spray pyrolysis (USP) is considered an efficient and continuous process for manufacturing nano-sized particles. In this study, one-step preparation for nano-sized Ag particles, Ag/copper oxide, as well as iron oxide hollow sphere is developed. The former two kinds of particles are developed for interconnect application, while a subsequent reduction treatment is conducted to turn iron oxide hollow spheres into iron hollow ones. Silver acetate instead of silver nitrate is used as the precursor for lowing the processing temperatures. There exists a critical spray calcination temperature (350oC) for completely decomposition of silver acetate. Subjected to sintering at 100oC or 250oC, the circuits prepared by Ag particle pastes thus produced have excellent current stressing and bending fatigue resistances. On the other hand, a mixture of silver acetate and copper(II) acetate is used to synthesize Ag/CuO mixed particles. The distribution of Ag-rich phase and Cu-rich phase is affected by the spray calcination temperature. 900oC-calcined Ag/CuO composite particles can be reduced and sintered into conductive films simultaneously at 250oC under reductive atmosphere. The average electrical resistivity is 70 μΩ-cm. Worthy of notice is, with a calcination temperature higher than 961oC, the melting point of silver, the reduced Ag/Cu particles show an inferior oxidation resistance. The fact that Ag distributed as nodules embedded in Cu matrix leads us to believe that the easy oxidation is due to Galvanic oxidation. As for hollow iron oxide particles, they can be obtained by using FeCl3/FeCl2 /C2H5NO2 mixed solution as the precursor through USP with spray calcination temperature of 550oC. They can be reduced to hollow iron spheres through isothermal reduction treatment at 500oC in N2-10%H2 with very slow heating and post cooling.
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-09起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066033-1.pdf9.57 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.