Please use this identifier to cite or link to this item:
標題: 鈦鋯鉿鋁矽硼氮化物多元複合硬質薄膜之微結構與特性研究
Microstructure and characteristics of (TiZrHfAlSiB)N multi-element composite hard films
作者: 陳柏誠
Bo-Cheng Chen
關鍵字: 鈦;鋯;鉿;鋁;矽;硼;氮化物;硬質薄膜;Ti;Zr;Hf;Al;Si;B;hard films
引用: [1] N. Selvakumar and H. C. Barshilia, 'Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications,' Sol. Energy Mater. Sol. Cells, vol. 98, pp. 1–23, 2012. [2] J. Musil, 'Hard and superhard nanocomposite coatings,' Surf. Coatings Technol., vol. 125, no. 1–3, pp. 322–330, 2000. [3] J. Musil, 'Nanocomposite Coatings with Enhanced Hardness,' Acta Metall. Sin., vol. 18, pp. 433–442, 2005. [4] J. Musil and J. Vlček, 'Magnetron sputtering of films with controlled texture and grain size,' Mater. Chem. Phys., vol. 54, no. 1–3, pp. 116–122, 1998. [5] E. O. Hall, 'The deformation and ageing of mild steel,' Proc. Phys. Soc. B, no. 64, pp. 747–753, 1951. [6] N. J. Petch, 'The cleavage strength of polycrystals,' Iron Steel Inst., vol. 174, pp. 25–28, 1953. [7] S. Vepfek, and S. Reiprich, 'Thin Solid Films,' vol. 268, pp. 64–71, 1995. [8] C. M. Wang, X. Pan and M. Rohle, 'Silicon nitride crystal structure and observations of lattice defects,' Mater. Sci., vol. 31, pp. 5281–5298, 1996. [9] A. Pélisson-Schecker, H. J. Hug, and J. Patscheider, 'Morphology, microstructure evolution and optical properties of Al-Si-N nanocomposite coatings,' Surf. Coatings Technol., vol. 257, pp. 114–120, 2014. [10] R. J. Xie and H. T. Hintzen, 'Optical properties of (oxy)nitride materials: A review,' J. Am. Ceram. Soc., vol. 96, no. 3, pp. 665–687, 2013. [11] 李正中, 薄膜光學與鍍膜技術. 2009. [12] A. Antonaia, A. Castaldo, M. L. Addonizio, and S. Esposito, 'Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature,' Sol. Energy Mater. Sol. Cells, vol. 94, no. 10, pp. 1604–1611, 2010. [13] C. G. Granqvist, 'Solar Energy Materials,' Adv. Mater., vol. 15, no. 21, pp. 1789–1803, 2003. [14] H. Ehrenreich,and B. O. Seraphin, 'Symposium on the Fundamental Optical Properties of Solids Relevant to Solar Energy Conversion,'Google patents; 1975. [15] Y. S. Touloukian,R. W. Powell,and C. Y. Ho, 'Thermophysical properties of matter-the TPRC data series,' Therm Diffus DTIC,Data Book,1974. [16] F. González, 'Coatings of Fe3O4 nanoparticles as selective solar absorber,' Open Surf, vol. 3, pp. 131–135, 2003. [17] A. Ienei, E. Isac, and L. Duţǎ, 'Synthesis of alumina thin films by spray pyrolysis,' Rev. Roum. Chim., vol. 55, no. 3, pp. 161–165, 2010. [18] E. Randich, S. N. Laboratories, D. D. Allred, and E. C. Devices, 'Chemically vapor-deposited ZrB2 as selective solar absorber*,' vol. 83, pp. 393–398, 1981. [19] E. Sani, L. Mercatelli, P. Sansoni, L. Silvestroni, and D. Sciti, 'Spectrally selective ultra-high temperature ceramic absorbers for high-temperature solar plants,' J. Renew. Sustain. Energy, vol. 4, no. 3, 2012. [20] E. Sani, L. Mercatelli, F. Francini, J. L. Sans, and D. Sciti, 'Ultra-refractory ceramics for high-temperature solar absorbers,' Scr. Mater., vol. 65, no. 9, pp. 775–778, 2011. [21] D. Ding, W. Cai, M. Long, H. Wu, and Y. Wu, 'Optical, structural and thermal characteristics of CuCuAl2O4 hybrids deposited in anodic aluminum oxide as selective solar absorber,' Sol. Energy Mater. Sol. Cells, vol. 94, no. 10, pp. 1578–1581, 2010. [22] Q. F. Geng, X. Zhao, X. H. Gao, and G. Liu, 'Sol-gel combustion-derived CoCuMnOxspinels as pigment for spectrally selective paints,' J. Am. Ceram. Soc., vol. 94, no. 3, pp. 827–832, 2011. [23] S. Pal, D. Diso, S. Franza, A. Licciulli,and L. Rizzo, 'Spectrally selective absorber coating from transition metal complex for efficient photothermal conversion,' Mater. Sci., vol. 48, no. 23, pp. 8268–8276, 2013. [24] I. Jerman, M. Mihelčič, D. Verhovek, J. Kovač, and B. Orel, 'Polyhedral oligomeric silsesquioxane trisilanols as pigment surface modifiers for fluoropolymer based Thickness Sensitive Spectrally Selective (TSSS) paint coatings,' Sol. Energy Mater. Sol. Cells, vol. 95, no. 2, pp. 423–431, 2011. [25] Q. Geng, X. Zhao, X. Gao, H. Yu, S. Yang, and G. Liu, 'Optimization design of CuCrxMn2− xO4-based paint coatings used for solar selective applications,' Sol Energy Mater Sol Cells, vol. 105, pp. 293–301, 2012. [26] Q. Liu, 'Low-temperature combustion synthesis of CuCr2O4 spinel powder for spectrally selective paints,' Sol-Gel Sci. Technol., vol. 61, no. 1, pp. 281–288, 2012. [27] A. Ambrosini, T. N. Lambert, M. Bencomo, A. Hall, N. P. Siegel,and C. K. Ho, 'Improved high temperature solar absorbers for use in concentrating solar power central receiver applications,' Am. Soc. Mech. Eng., pp. 587–594. [28] Z. Fang, 'Suitability of layered Ti3SiC2 and Zr3[Al(si)]4C6 ceramics as high temperature solar absorbers for solar energy applications,' Sol. Energy Mater. Sol. Cells, vol. 134, no. 1, pp. 252–260, 2015. [29] X. Xu, Z. Rao, J. Wu, Y. Li, Y. Zhang,and X. Lao,, 'In-situ synthesis and thermal shock resistance of cordierite/silicon carbide composites used for solar absorber coating,' Sol Energy Mater Sol Cells, vol. 130, pp. 257–263, 2014. [30] K. K. Wang, 'A facile process to prepare crosslinked nano-graphites uniformly dispersed in titanium oxide films as solar selective absorbers,' Sol. Energy Mater. Sol. Cells, vol. 143, pp. 198–204, 2015. [31] G. W. Kuckelkorn T, 'Radiation-selective absorber coating with an adherent oxide layer and method of making same,' Google Patents; 2010. [32] B. S. Richards, 'Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: a review,' Prog. Photovoltaics Res. Appl., vol. 12, no. 4, pp. 253–281, 2004. [33] B. O. Seraphin, 'Chemical vapor deposition of thin semiconductor films for solar energy conversion,' Thin Solid Films, vol. 39, pp. 87–94, 1976. [34] B. A. Selvakumar , H. C.Barshilia ,K.S. Rajam, 'Spectrally selective TiAlN/ CrAlON/Si3N4 tandem absorber for high temperature solar applications,' 2008. [35] C. Zou, W. Xie, and L. Shao, 'Functional multi-layer solar spectral selective absorbing coatings of AlCrSiN/AlCrSiON/AlCrO for high temperature applications,' Sol. Energy Mater. Sol. Cells, vol. 153, pp. 9–17, 2016. [36] L. Rebouta, 'Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,' Sol. Energy Mater. Sol. Cells, vol. 105, pp. 202–207, 2012. [37] N. Selvakumar, N. T. Manikandanath, A. Biswas, and H. C. Barshilia, 'Design and fabrication of highly thermally stable HfMoN/HfON/Al2O3 tandem absorber for solar thermal power generation applications,' Sol. Energy Mater. Sol. Cells, vol. 102, pp. 86–92, 2012. [38] H. D. Liu, 'Structure and thermal stability of spectrally selective absorber based on AlCrON coating for solar-thermal conversion applications,' Sol. Energy Mater. Sol. Cells, vol. 157, pp. 108–116, 2016. [39] T. Eisenhammer, 'High-temperature optical properties and stability of selective absorbers based on quasicrystalline AlCuFe,' Sol. Energy Mater. Sol. Cells, vol. 54, no. 1–4, pp. 379–386, 1998. [40] L. Mi, 'Thermal stability of nitride solar selective absorbing coatings used in high temperature parabolic trough current,' Sci. China Technol. Sci., vol. 53, no. 6, pp. 1507–1512, 2010. [41] M. Du, 'Optimization design of Ti0.5Al0.5N/Ti0.25Al0.75N/AlN coating used for solar selective applications,' Sol. Energy Mater. Sol. Cells, vol. 95, no. 4, pp. 1193–1196, 2011. [42] K. Valleti, D. Murali Krishna, and S. V. Joshi, 'Functional multi-layer nitride coatings for high temperature solar selective applications,' Sol. Energy Mater. Sol. Cells, vol. 121, pp. 14–21, 2014. [43] A. Dan, K. Chattopadhyay, and H. Barshilia, 'Angular solar absorptance and thermal stability of W/WAlN/WAlON/Al2O3-based solar selective absorber coating,' Appl Therm, vol. 109, pp. 997–1002, 2016. [44] A. Dan, J. Jyothi, K. Chattopadhyay, H. C. Barshilia, and B. Basu, 'Spectrally selective absorber coating of WAlN/WAlON/Al2O3for solar thermal applications,' Sol. Energy Mater. Sol. Cells, vol. 157, pp. 716–726, 2016. [45] A. Dan, K. Chattopadhyay, H. C. Barshilia, and B. Basu, 'Colored selective absorber coating with excellent durability,' Thin Solid Films, vol. 620, pp. 17–22, 2016. [46] ALMECO Group SBoT, ',' 2014. . [47] M. Zettl, 'High performance coatings for solar receivers and new dedicated manufacturing solution,' Energy Procedia, vol. 48, pp. 701–706, 2014. [48] R. Bayón, G. San Vicente, and Á. Morales, 'Durability tests and up-scaling of selective absorbers based on copper-manganese oxide deposited by dip-coating,' Sol. Energy Mater. Sol. Cells, vol. 94, no. 6, pp. 998–1004, 2010. [49] M. Joly, 'Novel black selective coating for tubular solar absorbers based on a sol-gel method,' Sol. Energy, vol. 94, pp. 233–239, 2013. [50] Y. Xue, 'Spectral properties and thermal stability of solar selective absorbing AlNi-Al2O3cermet coating,' Sol. Energy, vol. 96, pp. 113–118, 2013. [51] H. C. Barshilia, P. Kumar, K. S. Rajam, and A. Biswas, 'Structure and optical properties of AgAl2O3nanocermet solar selective coatings prepared using unbalanced magnetron sputtering,' Sol. Energy Mater. Sol. Cells, vol. 95, no. 7, pp. 1707–1715, 2011. [52] Z. Y. Nuru, C. J. Arendse, R. Nemutudi, O. Nemraoui, and M. Maaza, 'Pt-Al2O3 nanocoatings for high temperature concentrated solar thermal power applications,' Phys. B Condens. Matter, vol. 407, no. 10, pp. 1634–1637, 2012. [53] D. Xinkang, W. Cong, W. Tianmin, Z. Long, C. Buliang, and R. Ning, 'Microstructure and spectral selectivity of Mo-Al2O3solar selective absorbing coatings after annealing,' Thin Solid Films, vol. 516, no. 12, pp. 3971–3977, 2008. [54] J. Wang, B. Wei, Q. Wei, and D. Li, 'Optical property and thermal stability of Mo/Mo-SiO2/SiO2 solar-selective coating prepared by magnetron sputtering,' Phys. Status Solidi Appl. Mater. Sci., vol. 208, no. 3, pp. 664–667, 2011. [55] L. Zheng, 'Angular solar absorptance and thermal stability of Mo–SiO2 double cermet solar selective absorber coating,' Sol. Energy, vol. 115, pp. 341–346, 2015. [56] M. Adsten, R. Joerger, K. Järrendahl, and E. Wäckelgård, 'Optical characterization of industrially sputtered nickel-nickel oxide solar selective surface,' Sol. Energy, vol. 68, no. 4, pp. 325–328, 2000. [57] F. Cao, 'A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,' Energy Environ. Sci., vol. 8, no. 10, pp. 3040–3048, 2015. [58] Q. Zhang, Y. Yin, and D. R.Mills, 'High efficiency Mo-Al2O3 cermet selective surfaces for high-temperature application,' Sol. Energy Mater. Sol. Cells, vol. 40, no. 1996, pp. 43–53, 1996. [59] Q. C. Zhang, and D. Mills , 'Thin film solar selective surface coating,' Google Patents;1996. [60] S. Esposito, A. Antonaia, M. L. Addonizio, and S. Aprea, 'Fabrication and optimisation of highly efficient cermet-based spectrally selective coatings for high operating temperature,' Thin Solid Films, vol. 517, no. 21, pp. 6000–6006, 2009. [61] Q. C. Zhang, 'Metal-AlN cermet solar selective coatings deposited by direct current magnetron sputtering technology,' J. Phys. D. Appl. Phys., vol. 31, no. 4, pp. 355–362, 1998. [62] X. Wang, H. Li, X. Yu, X. Shi, and J. Liu, 'High-performance solution-processed plasmonic Ni nanochain-Al2O3selective solar thermal absorbers,' Appl. Phys. Lett., vol. 101, no. 20, pp. 1–6, 2012. [63] P. Konttinen, P. D. Lund, and R. J. Kilpi, 'Mechanically manufactured selective solar absorber surfaces,' Sol. Energy Mater. Sol. Cells, vol. 79, no. 3, pp. 273–283, 2003. [64] P. Konttinen, R. Kilpi, and P. D. Lund, 'Microstructural analysis of selective C/Al 2O3 /Al solar absorber surfaces,' vol. 425, pp. 24–30, 2003. [65] J. Chen, 'Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications,' Sol. Energy Mater. Sol. Cells, vol. 95, no. 6, pp. 1437–1440, 2011. [66] H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, 'Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,' Sol. Energy Mater. Sol. Cells, vol. 137, pp. 235–242, 2015. [67] W. Barnes, A. Dereux, and T. Ebbesen, 'Surface plasmon subwavelength optics,' Nature, vol. 424, no. 6950, pp. 824–830, 2003. [68] A. Zayats, I. Smolyaninov, and A. Maradudin, 'Nano-optics of surface plasmon polaritons,' Phys. Rep., vol. 408, no. 3–4, pp. 131–314, 2005. [69] J. Fan and S. Spura, 'Selective black absorbers using rf‐sputtered Cr2O3 /Cr cermet films,' Appl. Phys. Lett., vol. 30, no. 10, pp. 511–513, 1977. [70] V. Teixeira, 'Chromium-based thin sputtered composite coatings for solar thermal collectors,' Vacuum, vol. 64, no. 3–4, pp. 299–305, 2002. [71] J. Fan, 'Pulsed plasma deposition of chromium oxide/chromium‐cermet coatings,' Vac. Sci. Technol., vol. 30, no. 3–4, pp. 1827–1835, 1996. [72] H. C. Barshilia and K. S. Rajam, 'Reactive sputtering of hard nitride coatings using asymmetric-bipolar pulsed DC generator,' Surf. Coatings Technol., vol. 201, no. 3–4, pp. 1827–1835, 2006. [73] W. Werdecker, and F. Aldinger, 'Aluminum Nitride-An Alternative Ceramic Substrate for High Power Applications in Microcircuits,' IEEE Trans. Components, Hybrids, Manuf. Technol., vol. 7, pp. 399–404, 1984. [74] G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, 'The intrinsic thermal conductivity of AlN,' Phys. Chem. Solids, vol. 48, no. 7, pp. 641–647, 1987. [75] N. Kuromoto, H. Taniguchi, and I. Aso, 'Development of Translucent Aluminum Nitride Ceramics,' Ceram. Bull., vol. 68, p. 883887, 1989. [76] I. Petrov, E. Mojab, R. C. Powell, J. E. Greene, L. Hultman, and J. E. Sundgren, 'Synthesis of metastable epitaxial zinc‐blende‐structure AlN by solid‐state reaction,' Appl. Phys. Lett., vol. 60, 1992. [77] 氮化鋁陶瓷,'' . [78] A. R. Janus, 'Preparation and Properties of Reactively Sputtered Silicon Nitride,' J. Vac. Sci. Technol., vol. 4, no. 1, p. 37, 1967. [79] T. L. Chu, C. H. Lee, and G. A. Gruber, 'The Preparation and Properties of Amorphous Silicon Nitride Films,' J. Electrochem. Soc., vol. 114, no. 7, pp. 717–722, 1967. [80] 氮化矽,'' . [81] L. Vel, G. Demazeau, and J. Etourneau, 'Cubic boron nitride: synthesis, physicochemical properties and applications,' Mater. Sci. Eng., pp. 149–164, 1991. [82] C. Oshima, and A. Nagashima, 'Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces,' Phys. Condens. Matter, vol. 9, pp. 1–20, 1997. [83] A. Olszyna, J. Konwerska-Hrabowska, and M. Lisicki, 'Molecular structure of e-BN,' Diam. Relat. Mater., vol. 6, pp. 617–620, 1997. [84] 氮化硼'' . [85] L. Zhang, H. Yang, X. Pang, K. Gao, and A. A.Volinsky, 'Microstructure, residual stress, and fracture of sputtered TiN films,' Surf. Coatings Technol., vol. 224, pp. 120–125, 2013. [86] R. Armitage, Q. Yang, H. Feick, J. Gebauer, E. R. Weber, S. Shinkai,and K. Sasaki, 'Lattice-matched HfN buffer layers for epitaxy of GaN on Si,' Appl. Phys. Lett., vol. 2002, pp. 1450–1452, 1981. [87] I. L. Farrell, R. J. Reeves, A. R. H. Preston, B. M. Ludbrook, J. E. Downes, B. J. Ruck,and S. M. Durbin, 'Tunable electrical and optical properties of hafnium nitride thin films,' Appl. Phys. Lett., vol. 96, 2010. [88] G. V. R.Inc, 'Market Research Report: Flat Glass Market Analysis by Product (Tempered, Laminated, Basic Float, Insulating),' Appl. (Automotive, Constr. Segm. Forecast. to 2022, 2015. [89] T. Miura, Y. Benino, R. Sato, and T. Komatsu, 'Universal hardness and elastic recovery in Vickers nanoindentation of copper phosphate and silicate glasses,' J. Eur. Ceram. Soc., vol. 23, no. 3, pp. 409–416, 2003. [90] M. Nose, W. A. Chiou, M. Zhou, T. Mae, and M. Meshii, 'Microstructure and mechanical properties of Zr–Si–N films prepared by rf-reactive sputtering,' J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 20, no. 3, pp. 823–828, 2002. [91] X. Ma, W. N. Unertl, and A. Erdemir, 'Select the boron oxide-boric acid system: Nanoscale mechanical and wear properties,' Mater. Res., vol. 14, pp. 3455–3466, 1999. [92] M. D. Sacks, K. Wang, G. W. Scheiffele, and N. Bozkurt, 'Effect of Composition on Mullitization Behavior of α-Alumina/Silica Microcomposite Powders,' Am. Ceram. Soc., vol. 80, pp. 663–672, 1997. [93] G. Shao, 'Evolution of microstructure and radiative property of metal silicide–glass hybrid coating for fibrous ZrO2ceramic during high temperature oxidizing atmosphere,' Corros. Sci., vol. 126, no. January, pp. 78–93, 2017. [94] G. Eriksson and A. D. Pelton, 'Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the calcia-alumina, alumina-silica, and calcia-alumina-silica systems,' Met. Trans. B, vol. 24B, no. October, pp. 807–816, 1993. [95] S. Freimann, and S. Rahman, 'Refinement of the real structures of 2:1 and 3:2 mullite,' Eur. Ceram. Soc., vol. 21, pp. 2453–2461, 2001. [96] D. Mao and G. Lu, 'The effect of B2O3 addition on the crystallization of amorphous TiO2-ZrO2 mixed oxide,' J. Solid State Chem., vol. 180, no. 2, pp. 484–488, 2007. [97] I. Saenko, M. Ilatovskaia, G.Savinykh, and O.Fabrichnaya, 'Experimental investigation of phase relations and thermodynamic properties in the ZrO2 -TiO2 system,' J. Am. Ceram. Soc., vol. 101, no. 1, pp. 386–399, 2018. [98] D. Shin and Z. K. Liu, 'Phase stability of hafnium oxide and zirconium oxide on silicon substrate,' Scr. Mater., vol. 57, no. 3, pp. 201–204, 2007.
本實驗以等莫耳比AlSiB三元素合金以及TiZrHf三元素合金為靶材,固定氮分壓=20%,基板溫度400 ℃,薄膜厚度1 m,於不同靶材功率下鍍製(AlSiBTiZrHf)N複合硬膜,探討其晶體結構、形貌、機械性質及光學特性等變化,並於大氣環境下退火至1300 ℃持溫2個小時,進行抗氧化性評估及相變化。
本研究主要分為兩個部分:第一部分為TiZrHf摻雜至(AlSiB)N複合硬質薄膜,實驗結果顯示,其結構皆為非晶結構。在機械性質方面,隨著TiZrHf靶材功率的增加,硬度、彈性模數也隨之增加,分別達到28.5 GPa和259.2GPa。在光學性質方面,可發現薄膜反射率隨之增加,吸收邊界紅移,薄膜顏色轉趨為金黃色。在抗氧化性方面,(AlSiB)N薄膜具有最佳的抗氧化能力,溫度達 1200 ℃以上時才全氧化,隨著TiZrHf靶材功率的增加,抗氧化能力隨之減弱。第二部分為AlSiB摻雜至(TiZrHf)N複合硬質薄膜,(TiZrHf)N薄膜結構為FCC結構,隨著AlSiB靶材功率增加,薄膜結晶性先增後減,最終轉為非晶結構。在機械性質方面,薄膜硬度與彈性模數也先增後減,在AlSiB靶材功率增加至40W時,其硬度和彈性模數達到最高分別為34.0 GPa和271.3 GPa。在光電性質,薄膜反射率隨之減少,甚至逐漸在紅外光區段展現透明特性,而薄膜電阻率則隨之上升。在抗氧化性方面,(TiZrHf)N薄膜抗氧化性較弱,約600 oC時便完全氧化,隨著AlSiB靶材功率的增加,抗氧化能力隨之增加。

Research and application of hard film, the ultra-high hardness is no longer the only orientation nowdays.The different application requirements are considered, and the development of multi-functionality in which characteristic of transparent hard film is transparent and hard.Film is used for various optics, such as mirrors, heat mirrors, and solar absorption films, as a protective layer for glass or metal films. AlN, Si3N4 and BN are all wide-gap materials, and have high oxidation resistance and chemical stability. They also have different characteristics. Among them, AlN has good dielectric properties, and Si3N4 performs well in fracture toughness.BN has excellent resistance due to its low coefficient of friction.TiZrHf mainly performs metal properties and is used to change the optical properties of the film. TiN and ZrN have good chemical stability, and HfN has high reflectivity.
  In this experiment, AlSiB three-element alloy(the molar ratio is equal to 1) and TiZrHf three-element alloy(the molar ratio is equal to 1) were used as targets, fixed nitrogen partial pressure=20%, substrate temperature 400 °C, film thickness 1 m, and plated under different target power (AlSiBTiZrHf) N composite hard film.Its crystal structure, morphology, mechanical properties and optical properties were investigated, and annealed to 1300 °C for 2 hours under atmospheric conditions for oxidation resistance evaluation and phase change.
  This study is mainly divided into two parts: the first part is TiZrHf doped to (AlSiB)N composite hard film, the experimental results show that the structure is amorphous. In terms of mechanical properties, as the power of the TiZrHf target increases, the hardness and elastic modulus increases, reaching 28.5 GPa and 259.2 GPa, respectively. In terms of optical properties, it was found that the reflectance of the film increased, the absorption boundary was red-shifted, and the color of the film turned golden yellow. In terms of oxidation resistance, the (AlSiB)N film has the best oxidation resistance. When the temperature is above 1200 °C, it is fully oxidized. As the power of the TiZrHf target increases, the oxidation resistance decreases.The second part is AlSiB doped to (TiZrHf)N composite hard film. The structure of (TiZrHf)N film is FCC structure. As the power of AlSiB target increases, the crystallinity of the film increases first and then decreases, and finally turns into amorphous structure. In terms of mechanical properties, the hardness and elastic modulus of the film also increased first and then decreased. When the power of the AlSiB target increased to 40 W, the hardness and elastic modulus reached a maximum of 34.0 GPa and 271.3 GPa, respectively.In the photoelectric properties, the reflectance of the film reduces, and even the transparent property is gradually exhibited in the infrared light section, and the film resistivity increases. In terms of oxidation resistance, the (TiZrHf)N film has weak oxidation resistance and is completely oxidized at about 600 °C. As the power of the AlSiB target increases, the antioxidant capacity increases.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105066036-1.pdf19.17 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.