Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorTzong-Ming Wuen_US
dc.contributor.authorHsiang-Ting Wangen_US
dc.identifier.citation[1] Y.-H. Na, Y. He, N. Asakawa, N. Yoshie, and Y. Inoue, 'Miscibility and Phase Structure of Blends of Poly(ethylene oxide) with Poly(3-hydroxybutyrate), Poly(3-hydroxypropionate), and Their Copolymers,' Macromolecules, vol. 35, no. 3, pp. 727-735, 2002. [2] N. Wu and H. Wang, 'Effect of zinc phenylphosphonate on the crystallization behavior of poly(l-lactide),' Journal of Applied Polymer Science, vol. 130, no. 4, pp. 2744-2752, 2013. [3] 戈進杰, '生物高分子材料及其應用,' 2002, pp. 1-10. [4] 日本生物可分解塑膠研究會, 圖解生物可分解塑膠. [5] R. A. Gross and B. Kalra, 'Biodegradable Polymers for the Environment,' Science, 10.1126/science.297.5582.803 vol. 297, no. 5582, p. 803, 2002. [6] G.-Q. Chen and M. K. Patel, 'Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review,' Chemical Reviews, vol. 112, no. 4, pp. 2082-2099, 2012. [7] P. J. Hocking, R. H. Marchessault, M. R. Timmins, R. W. Lenz, and R. C. Fuller, 'Enzymatic Degradation of Single Crystals of Bacterial and Synthetic Poly(β-hydroxybutyrate),' Macromolecules, vol. 29, no. 7, pp. 2472-2478, 1996. [8] T. Kijchavengkul, R. Auras, M. Rubino, S. Selke, M. Ngouajio, and R. T. Fernandez, 'Biodegradation and hydrolysis rate of aliphatic aromatic polyester,' Polymer Degradation and Stability, vol. 95, no. 12, pp. 2641-2647, 2010. [9] S. Mohanty and S. K. Nayak, 'Aromatic-aliphatic poly(butylene adipate-co-terephthalate) bionanocomposite: Influence of organic modification on structure and properties,' Polymer Composites, vol. 31, no. 7, pp. 1194-1204, 2010. [10] Z. Saadi, G. Cesar, H. Bewa, and L. Benguigui, 'Fungal degradation of poly (butylene adipate-co-terephthalate) in soil and in compost,' Journal of Polymers and the Environment, vol. 21, no. 4, pp. 893-901, 2013. [11] Z. Jun, L. Zhi, Z. Jing, and L. Shiyun, 'Synthesis and characterization of the biodegradable poly (butylene adipate-co-butylene terephthalate) copolyesters,' Journal of Jiangsu University of Science and Technology (Natural Science Edition), vol. 3, p. 016, 2013. [12] C. Zhao, X. Bai, G. Zou, Y. He, and J. Li, Effect of monomer ratio of AA to PTA on properties of PBAT copolyesters. 2017, pp. 452-459. [13] Z. Gan, H. Abe, and Y. Doi, 'Temperature-Induced Polymorphic Crystals of Poly(butylene adipate),' Macromolecular Chemistry and Physics, vol. 203, no. 16, pp. 2369-2374, 2002. [14] Z. Gan, K. Kuwabara, M. Yamamoto, H. Abe, and Y. Doi, 'Solid-state structures and thermal properties of aliphatic–aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters,' Polymer Degradation and Stability, vol. 83, no. 2, pp. 289-300, 2004. [15] P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, 'Polymer-layered silicate nanocomposites: an overview,' Applied Clay Science, vol. 15, no. 1, pp. 11-29, 1999. [16] S. Sinha Ray and M. Okamoto, 'Polymer/layered silicate nanocomposites: a review from preparation to processing,' Progress in Polymer Science, vol. 28, no. 11, pp. 1539-1641, 2003. [17] J. Liu, W. J. Boo, A. Clearfield, and H. J. Sue, 'Intercalation and Exfoliation: A Review on Morphology of Polymer Nanocomposites Reinforced by Inorganic Layer Structures,' Materials and Manufacturing Processes, vol. 21, no. 2, pp. 143-151, 2006. [18] D. M. Poojary and A. Clearfield, 'Coordinative intercalation of alkylamines into layered zinc phenylphosphonate. Crystal structures from X-ray powder diffraction data,' Journal of the American Chemical Society, vol. 117, no. 45, pp. 11278-11284, 1995. [19] G. Cao, H. Lee, V. M. Lynch, and T. E. Mallouk, 'Synthesis and structural characterization of a homologous series of divalent-metal phosphonates, MII (O3PR). cntdot. H2O and MII (HO3PR) 2,' Inorganic Chemistry, vol. 27, no. 16, pp. 2781-2785, 1988. [20] P. Pan, Z. Liang, A. Cao, and Y. Inoue, 'Layered Metal Phosphonate Reinforced Poly(l-lactide) Composites with a Highly Enhanced Crystallization Rate,' ACS Applied Materials & Interfaces, vol. 1, no. 2, pp. 402-411, 2009. [21] S. Wang, C. Han, J. Bian, L. Han, X. Wang, and L. Dong, 'Morphology, crystallization and enzymatic hydrolysis of poly(L-lactide) nucleated using layered metal phosphonates,' Polymer International, vol. 60, no. 2, pp. 284-295, 2011. [22] Y. Zhang, K. J. Scott, and A. Clearfield, 'Intercalation of alkylamines into dehydrated and hydrated zinc phenyiphosphonates,' Journal of Materials Chemistry, 10.1039/JM9950500315 vol. 5, no. 2, pp. 315-318, 1995. [23] R. Herrera, L. Franco, A. Rodríguez-Galán, and J. Puiggalí, 'Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s,' Journal of Polymer Science Part A: Polymer Chemistry, vol. 40, no. 23, pp. 4141-4157, 2002. [24] Z. Saadi, G. Cesar, H. Bewa, and L. Benguigui, 'Fungal Degradation of Poly(Butylene Adipate-Co-Terephthalate) in Soil and in Compost,' Journal of Polymers and the Environment, journal article vol. 21, no. 4, pp. 893-901, 2013. [25] F. Chen and J. Zhang, 'Effects of Plasticization and Shear Stress on Phase Structure Development and Properties of Soy Protein Blends,' ACS Applied Materials & Interfaces, vol. 2, no. 11, pp. 3324-3332, 2010. [26] S. K. Nayak, 'Biodegradable PBAT/Starch Nanocomposites,' Polymer-Plastics Technology and Engineering, vol. 49, no. 14, pp. 1406-1418, 2010. [27] H. Moustafa, C. Guizani, C. Dupont, V. Martin, M. Jeguirim, and A. Dufresne, 'Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications,' ACS Sustainable Chemistry & Engineering, vol. 5, no. 2, pp. 1906-1916, 2017. [28] J. Xie et al., 'Scale-Up Fabrication of Biodegradable Poly(butylene adipate-co-terephthalate)/Organophilic–Clay Nanocomposite Films for Potential Packaging Applications,' ACS Omega, vol. 3, no. 1, pp. 1187-1196, 2018. [29] S. Mohanty and S. K. Nayak, 'Biodegradable Nanocomposites of Poly(butylene adipate-co-terephthalate) (PBAT) and Organically Modified Layered Silicates,' Journal of Polymers and the Environment, journal article vol. 20, no. 1, pp. 195-207, 2012. [30] Y. Nabar, J. M. Raquez, P. Dubois, and R. Narayan, 'Production of Starch Foams by Twin-Screw Extrusion:  Effect of Maleated Poly(butylene adipate-co-terephthalate) as a Compatibilizer,' Biomacromolecules, vol. 6, no. 2, pp. 807-817, 2005. [31] C.-S. Wu, 'Process, Characterization and Biodegradability of Aliphatic Aromatic Polyester/Sisal Fiber Composites,' Journal of Polymers and the Environment, journal article vol. 19, no. 3, pp. 706-713, 2011. [32] C.-S. Wu, 'Aliphatic–aromatic polyester–polyaniline composites: preparation, characterization, antibacterial activity and conducting properties,' Polymer International, vol. 61, no. 10, pp. 1556-1563, 2012. [33] F. Yu, P. Pan, N. Nakamura, and Y. Inoue, 'Nucleation Effect of Layered Metal Phosphonate on Crystallization of Bacterial Poly[(3-hydroxybutyrate)-co-(3-hydroxyhexanoate)],' Macromolecular Materials and Engineering, vol. 296, no. 2, pp. 103-112, 2011. [34] Y. Chen et al., 'Modulated crystallization behavior, polymorphic crystalline structure and enzymatic degradation of poly(butylene adipate): Effects of layered metal phosphonate,' European Polymer Journal, vol. 72, pp. 222-237, 2015. [35] Y.-A. Chen, E.-C. Chen, and T.-M. Wu, 'Organically modified layered zinc phenylphosphonate reinforced stereocomplex-type poly(lactic acid) nanocomposites with highly enhanced mechanical properties and degradability,' Journal of Materials Science, vol. 50, no. 23, pp. 7770-7778, 2015. [36] Y.-A. Chen, D.-L. Kuo, E.-C. Chen, and T.-M. Wu, Enhanced enzymatic degradation in nanocomposites of various organically-modified layered zinc phenylphosphonates and poly (butylene succinate-co-adipate). 2017. [37] E. Kitakuni et al., 'Biodegradation of poly(tetramethylene succinate-cotetramethylene abdicate) and poly(tetramethylene succinate) through water-soluble products,' Environmental Toxicology and Chemistry, vol. 20, no. 5, pp. 941-946, 2001. [38] C.-Y. Ciou, S.-Y. Li, and T.-M. Wu, 'Morphology and degradation behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/layered double hydroxides composites,' European Polymer Journal, vol. 59, pp. 136-143, 2014. [39] M. C. Serrano et al., 'In vitro biocompatibility assessment of poly(ε-caprolactone) films using L929 mouse fibroblasts,' Biomaterials, vol. 25, no. 25, pp. 5603-5611, 2004. [40] Y. S. Nam and T. G. Park, 'Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation,' Journal of Biomedical Materials Research, vol. 47, no. 1, pp. 8-17, 1999. [41] Y. S. Nam, J. J. Yoon, and T. G. Park, 'A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive,' Journal of Biomedical Materials Research, vol. 53, no. 1, pp. 1-7, 2000. [42] Q. Lv and Q. Feng, 'Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique,' Journal of Materials Science: Materials in Medicine, journal article vol. 17, no. 12, pp. 1349-1356, 2006. [43] C. M. Hassan and N. A. Peppas, 'Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods,' in Biopolymers • PVA Hydrogels, Anionic Polymerisation NanocompositesBerlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 37-65. [44] C. J. Doillon, C. F. Whyne, S. Brandwein, and F. H. Silver, 'Collagen-based wound dressings: Control of the pore structure and morphology,' Journal of Biomedical Materials Research, vol. 20, no. 8, pp. 1219-1228, 1986. [45] M. Lebourg, J. S. Antón, and J. L. G. Ribelles, 'Porous membranes of PLLA–PCL blend for tissue engineering applications,' European Polymer Journal, vol. 44, no. 7, pp. 2207-2218, 2008. [46] J.-W. Kim, K. Taki, S. Nagamine, and M. Ohshima, 'Preparation of poly(L-lactic acid) honeycomb monolith structure by unidirectional freezing and freeze-drying,' Chemical Engineering Science, vol. 63, no. 15, pp. 3858-3863, 2008. [47] J. P. Zheng, C. Z. Wang, X. X. Wang, H. Y. Wang, H. Zhuang, and K. De Yao, 'Preparation of biomimetic three-dimensional gelatin/montmorillonite–chitosan scaffold for tissue engineering,' Reactive and Functional Polymers, vol. 67, no. 9, pp. 780-788, 2007. [48] 何曼君,張紅東,陳維孝, 高分子物理, vol. 董西俠復旦大學出版社, no. 2008年2月第三版第三次印. [49] Z. Bartczak and A. Galeski, 'Homogeneous nucleation in polypropylene and its blends by small-angle light scattering,' Polymer, vol. 31, no. 11, pp. 2027-2038, 1990. [50] A. S. Dum, 'Structural investigation of polymers G. Bodor Ellis Horwood, Chichester, 1991. pp. xxvi + 454, price £45. ISBN 0-13-852989-2,' Polymer International, vol. 30, no. 4, pp. 551-551, 1993. [51] Y. Long, R. A. Shanks, and Z. H. Stachurski, 'Kinetics of polymer crystallisation,' Progress in Polymer Science, vol. 20, no. 4, pp. 651-701, 1995. [52] M. Avrami, 'Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei,' The Journal of Chemical Physics, vol. 8, no. 2, pp. 212-224, 1940. [53] W. D. Lee, E. S. Yoo, and S. S. Im, 'Crystallization behavior and morphology of poly(ethylene 2,6-naphthalate),' Polymer, vol. 44, no. 21, pp. 6617-6625, 2003. [54] J. D. Hoffman and J. J. Weeks, 'Rate of Spherulitic Crystallization with Chain Folds in Polychlorotrifluoroethylene,' The Journal of Chemical Physics, vol. 37, no. 8, pp. 1723-1741, 1962. [55] K. J. Frink, R. C. Wang, J. L. Colon, and A. Clearfield, 'Intercalation of ammonia into zinc and cobalt phenylphosphonates,' Inorganic Chemistry, vol. 30, no. 7, pp. 1438-1441, 1991. [56] C. Cai, Q. Shi, L. Li, L. Yin, G. Tang, and J. Yin, 'Preparation, structure and properties of PP-g-AA grafting copolymer,' Frontiers of Chemistry in China, journal article vol. 3, no. 2, pp. 133-137, 2008. [57] R. G. Alamo and L. Mandelkern, 'Crystallization kinetics of random ethylene copolymers,' Macromolecules, vol. 24, no. 24, pp. 6480-6493, 1991. [58] K. Numata, A. Finne-Wistrand, A.-C. Albertsson, Y. Doi, and H. Abe, 'Enzymatic Degradation of Monolayer for Poly(lactide) Revealed by Real-Time Atomic Force Microscopy: Effects of Stereochemical Structure, Molecular Weight, and Molecular Branches on Hydrolysis Rates,' Biomacromolecules, vol. 9, no. 8, pp. 2180-2185, 2008. [59] A. C. Fernandes, J. W. Barlow, and D. R. Paul, 'Aliphatic polyester miscibility with polyepichlorohydrin,' Journal of Applied Polymer Science, vol. 29, no. 6, pp. 1971-1983, 1984. [60] L. Ye and Q. Wu, 'Effects of an intercalating agent on the morphology and thermal and flame-retardant properties of low-density polyethylene/layered double hydroxide nanocomposites prepared by melt intercalation,' Journal of Applied Polymer Science, vol. 123, no. 1, pp. 316-323, 2012. [61] F. Signori, A. Boggioni, M. C. Righetti, C. E. Rondán, S. Bronco, and F. Ciardelli, 'Evidences of Transesterification, Chain Branching and Cross-Linking in a Biopolyester Commercial Blend upon Reaction with Dicumyl Peroxide in the Melt,' Macromolecular Materials and Engineering, vol. 300, no. 2, pp. 153-160, 2015. [62] F. Li, X. Xu, Q. Hao, Q. Li, J. Yu, and A. Cao, 'Effects of comonomer sequential structure on thermal and crystallization behaviors of biodegradable poly(butylene succinate-co-butylene terephthalate)s,' Journal of Polymer Science Part B: Polymer Physics, vol. 44, no. 12, pp. 1635-1644, 2006.zh_TW
dc.description.abstract聚丁烯己二酸對苯二甲酸酯(Poly(butylene adipate-co-terephthalate),PBAT)為環境友好之生物可分解高分子,擁有類似線性低密度聚乙烯的特性,非常具有發展潛力。本研究以不同莫耳比例之己二酸及對苯二甲酸二甲酯合成出PBAT,接著將馬來酸接枝於PBAT高分子鏈上,並利用化學插層法製備出有機改質PPZn,使PBAT高分子鏈插層進入有機改質PPZn層間時能有化學鍵結產生,以增強無機物與高分子基材的相容性,更進一步探討生物可分解高分子複合材料之結晶行為與不同形貌下的生物降解行為。使用XRD鑑定己烷二胺及十二烷基二胺改質PPZn的結構排列,層間距由原本的14.6 Å分別增加至24.1 Å與16 Å。由FT-IR圖譜觀察到改質後PPZn增加了波數為2853-3005 cm-1 和1650-1550 cm-1之吸收峰,表示長鏈烷基胺成功插層進入PPZn層間中,並經由溶劑插層法製備出不同比例之PBAT/C6-PPZn及C12-PPZn奈米複合材料,由XRD圖譜及TEM影像可以判斷改質PPZn以部分剝離與部分插層且隨機分散於PBAT 基材中,且添加改質PPZn並不會改變PBAT之結晶結構,再利用TGA分析複合材料熱穩定性,得知有機改質PPZn對於PBAT具有催化裂解效果。探討透過添加入不同比例C6-PPZn及C12-PPZn對於PBAT之等溫結晶行為影響,發現C6-PPZn之添加上升會使複合材料結晶速率提升,但當C12-PPZn添加比例越高時,結晶速率則是呈現由快至遲緩的趨勢。降解測試藉由假單胞菌(Lipase from Pseudomonas sp.)酵素酶作為降解液,再進行不同形貌之PBAT及其C6-PPZ和C12-PPZ奈米複合材料之生物降解測試,由其重量損失與降解時間之變化,可得知PBAT之降解速率會隨著馬來酸的加入及改質PPZn含量上升而使降解速率增加,且多孔形貌之重量損失程度相較於薄膜形貌更加顯著。zh_TW
dc.description.abstractPoly(butylene adipate-co-terephthalate) (PBAT) is an environmentally friendly biodegradable polymer which contains the comparative physical properties to that of low-density polyethylene. In this study, PBAT was synthesized from different molar ratios of adipic acid and dimethyl terephthalate. Then, the maleic acid was grafted onto PBAT polymer chain (g-PBAT) and the organically modified PPZn was sucessfully synthesized to intercalate diaminohexane and dodecanediamine into the interlayer spacing of PPZn (designated as C6-PPZn and C12-PPZn) to improve the compatibility and dispersibility between the polymer and PPZn. Furthermore, the dispersion, crystallization and biodegradability of g-PBAT/organically modified PPZn nanocomposites were investigated systemtically. The interlayer spacing of PPZn determined by wide-angle X-ray diffraction (WAXD) was increased from 14.6 Å for PPZn to 24.1 Å and 16 Å for C6-PPZn and C12-PPZn, respectively. Compared to the PPZn, the FT-IR spectra of organically modified PPZn contain absorption bands at 2853-3005 cm-1 and 1650-1550 cm-1 for the C-H stretching vibration and NH2 deformation from diaminohexane and dodecanediamine. The g-PBAT/ organically modified PPZn nanocomposites were prepared by solvent intercalation method. The structure and morphology of the g-PBAT/ organically modified PPZn nanocomposites were characterized by WAXD and transmission electron microscopy (TEM). The results of WAXD and TEM results show that the organically modified PPZn are randomly dispersed in the PBAT matrix. However, the addition of organically modified PPZn into PBAT would not change the crystalline structure of the nanocomposites. The results of isothermal crystallization show that the crystallization rate increases when the incorporation of C6-PPZn in nanocomposites increases, in contrast to C12-PPZn. Degradation tests was used Lipase from Pseudomonas sp. as the enzymatic degradation solution. Both the increasing content of organically modified PPZn and the presence of grafted maleic acid into PBAT would increase the weight loss of PBAT. In addition, the degradation rate of the porous morphology is more significant than the film morphology.en_US
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 x 表目錄 xix 第一章 前言 1 1.1 生物可分解高分子簡介 2 1.2 聚丁烯己二酸對苯二甲酸酯簡介 5 1.3 高分子奈米複合材料簡介 8 1.4 層狀苯基磷酸鋅之簡介 10 第二章 文獻回顧及理論基礎 12 2.1 聚丁烯己二酸對苯二甲酸酯複合材料 12 2.2 高分子/層狀苯基磷酸鋅之奈米複合材料 21 2.3 冷凍乾燥技術製備多孔性生物可分解高分子 31 2.4 高分子結晶動力學 37 2.4.1 Avrami 方程式 38 2.4.2 Hoffman-Weeks平衡熔點(Tmo) 40 2.5 研究動機與方法 41 第三章 實驗設計及方法 42 3.1 實驗材料 42 3.2 實驗儀器 45 3.3 實驗架構 47 3.4 實驗步驟 49 3.4.1 聚丁烯己二酸對苯二甲酸酯之製備 49 3.4.2 聚丁烯己二酸對苯二甲酸酯接枝馬來酸之製備 50 3.4.3 聚丁烯己二酸對苯二甲酸酯接枝馬來酸之接枝率測定 50 3.4.4 層狀苯基磷酸鋅之製備 51 3.4.5 有機改質層狀苯基磷酸鋅之製備 51 3.4.6 利用溶劑成膜法製備聚丁烯己二酸對苯二甲酸酯接枝馬來酸/有機改質層狀苯基磷酸鋅奈米複合材料 52 3.4.7 利用冷凍乾燥法製備多孔性聚丁烯己二酸對苯二甲酸酯接枝馬來酸/有機改質層狀苯基磷酸鋅奈米複合材料 52 3.4.8 聚丁烯己二酸對苯二甲酸酯接枝馬來酸/有機改質層狀苯基磷酸鋅奈米複合材料之生物降解實驗 53 3.4.9 多孔形貌聚丁烯己二酸對苯二甲酸酯接枝馬來酸/有機改質層狀苯基磷酸鋅奈米複合材料之孔隙率測定 54 3.5 分析儀器及操作條件 55 3.5.1 凝膠滲透層析儀(Gel Permeation Chromatography,GPC) 55 3.5.2 超導磁場核磁共振儀( Nuclear Magenetic Resonance,NMR) 55 3.5.3 示差掃描式熱分析儀(Different scanning calorimeter,DSC) 55 3.5.4 廣角X光繞射儀(Wide Angle X-Ray Diffraction,WAXD) 55 3.5.5 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer,FT-IR) 56 3.5.6 熱重分析儀(Thermogravimetric analysis,TGA) 56 3.5.7 穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 56 3.5.8 場發射掃描式電子顯微鏡(Field-emmision Scanning electronic microscopy,FE-SEM) 57 第四章 結果與討論 58 4.1 PPZn製備與改質之分析 58 4.1.1 PPZn及有機改質PPZn之結構分析 58 4.1.2 PPZn及有機改質PPZn之熱性質分析 61 4.2 聚丁烯己二酸對苯二甲酸酯PBAT-80與其奈米複合材料之特性研究探討 63 4.2.1 聚丁烯己二酸對苯二甲酸酯PBAT-80之組成與結構鑑定 63 4.2.2 聚丁烯己二酸對苯二甲酸酯接枝馬來酸g-PBAT-80之特性分析 65 4.2.3 g-PBAT-80添加C6-PPZn奈米複合材料之分散性研究 68 4.2.4 g-PBAT-80添加C12-PPZn奈米複合材料之分散性研究 70 4.2.5 g-PBAT-80添加C6-PPZn奈米複合材料之等溫結晶行為探討 72 4.2.6 g-PBAT-80添加C12-PPZn奈米複合材料之等溫結晶行為探討 78 4.2.7 g-PBAT-80添加C6-PPZn奈米複合材料之薄膜形貌生物降解測試 84 4.2.8 g-PBAT-80添加C12-PPZn奈米複合材料之薄膜形貌生物降解測試 88 4.2.9 g-PBAT-80添加C6-PPZn奈米複合材料之多孔形貌生物降解測試 92 4.2.10 g-PBAT-80添加C12-PPZn奈米複合材料之多孔形貌生物降解測試 96 4.3 聚丁烯己二酸對苯二甲酸酯PBAT-50與其奈米複合材料之特性研究探討 100 4.3.1 聚丁烯己二酸對苯二甲酸酯PBAT-50之組成與結構鑑定 100 4.3.2 聚丁烯己二酸對苯二甲酸酯接枝馬來酸g-PBAT-50之分析 102 4.3.3 g-PBAT-50添加C6-PPZn奈米複合材料之分散性研究 105 4.3.4 g-PBAT-50添加C12-PPZn奈米複合材料之分散性研究 107 4.3.5 g-PBAT-50添加C6-PPZn奈米複合材料之等溫結晶行為探討 109 4.3.6 g-PBAT-50添加C12-PPZn奈米複合材料之等溫結晶行為探討 115 4.3.7 g-PBAT-50添加C6-PPZn奈米複合材料之薄膜形貌生物降解測試 121 4.3.8 g-PBAT-50添加C12-PPZn奈米複合材料之薄膜形貌生物降解測試 125 4.3.9 g-PBAT-50添加C6-PPZn奈米複合材料之多孔形貌生物降解測試 129 4.3.10 g-PBAT-50添加C12-PPZn奈米複合材料之多孔形貌生物降解測試 133 4.4 聚丁烯己二酸對苯二甲酸酯PBAT-20與其奈米複合材料之特性研究探討 137 4.4.1 聚丁烯己二酸對苯二甲酸酯PBAT-20之組成與結構鑑定 137 4.4.2 聚丁烯己二酸對苯二甲酸酯接枝馬來酸g-PBAT-20之分析 139 4.4.3 g-PBAT-20添加C6-PPZn奈米複合材料之分散性研究 142 4.4.4 g-PBAT-20添加C12-PPZn奈米複合材料之分散性研究 144 4.4.5 g-PBAT-20添加C6-PPZn奈米複合材料之等溫結晶行為探討 146 4.4.6 g-PBAT-20添加C12-PPZn奈米複合材料之等溫結晶行為探討 152 4.4.7 g-PBAT-20添加C6-PPZn奈米複合材料之薄膜形貌生物降解測試 158 4.4.8 g-PBAT-20添加C12-PPZn奈米複合材料之薄膜形貌生物降解測試 162 第五章 結論 166 參考文獻 168zh_TW
dc.subjectPoly(butylene adipate -co-terephthalate)en_US
dc.subjectLayered zinc phenylphosphonateen_US
dc.subjectCrystalline behaviorsen_US
dc.titlePreparation and Characterization of Maleic Acid- Grafted Poly(butylene adipate-co-terephthalate)/ Layered Zinc Phenylphosphonate Nanocompositesen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:材料科學與工程學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-108-5105066019-1.pdf16.49 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.