Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97964
標題: 高功率脈衝磁控濺鍍P型與N型氧化鈦薄膜材料與相關元件特性研究
Characterization and Related Device Performance of p- and n- Type Titanium Oxide Thin Films by High Power Impulse Magnetron Sputtering
作者: 彭武章
Wu-Chang Peng
關鍵字: 一氧化鈦;二氧化鈦;高功率脈衝磁控濺鍍;薄膜電晶體;γ-titanium monoxide (γ-TiO);titanium dioxide (TiO2);high-power impulse magnetron sputtering (HIPIMS);thin film transistor (TFT)
引用: [1] Sigurd Wagner, Helena Gleskova , I-Chun Cheng , Ming Wu, Silicon for thin-film transistors, Thin Solid Films 430 (2003) 15–19. [2] Shuichi Uchikoga, Low-Temperature Polycrystalline Silicon Thin-Film Transistor Technologies for System-on-Glass Displays, MRS BULLETIN (2002) 881-886 [3] Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano and Hideo Hosono, 'Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors', Nature, 432 (2004) 488-492. [4] W. C. Lo, C. H. Chen, S. Y. Wu, K. C. Chen and J. L. He, 'Arc ion plated double layer TiO/TiO2 coatings as the p-n junction for possible photovoltaic purpose', Renewable Energy 2008 International Conference and Exhibition, P-PV-044 (2008), Busan, Korea. [5] A. Anders, J. Andersson and A. Ehiasarian, 'High power impulse magnetron sputtering: Current-voltage-time haracteristics indicate the onset of sustained self-sputtering', Journal of Applied Physics, 102 113303 (2007) 1-10. [6] V. Straňák, M. Cada, M. Quaas, S. Block, R. Bogdanowicz, H. Wulff, S. Kment, Z. Hubicka, C. A Helm, M. Tichy and R. Hippler, 'Physical properties of homogeneous TiO2 films prepared by high power impulse magnetron sputtering as a function of crystallographic phase and nanostructure', Journal of Physics D: Applied Physics, 42 (2009) 105204. [7] Ahn, B. D., Ok, K. C., Park, J. S. & Chung, K. B. 'Device instability of post annealed TiOx thin-film transistors under gate bias stresses'. Journal of Vacuum Science & Technology B, 31 (2013) 021204. [8] Park, J. W., Han, S. W., Jeon, N., Jang, J. & Yoo, S. 'Improved Electrical Characteristics of Amorphous Oxide TFTs Based on TiOx Channel Layer Grown by Low-Temperature MOCVD'. IEEE Electron Device Letters, 29 (2008) 1319–1321. [9] E. Fortunato, P. Barquinha and R. Martins, 'Oxide semiconductor thin‐film transistors: a review of recent advances', Advanced materials, 24(2012) 2945-2986. [10] E. Fortunato, P. Barquinha, A. Pimentel, A. Gonc¸alves, A. Marques, L. Pereira and R. Martins, 'Recent advances in ZnO transparent thin film transistors', Thin Solid Films, 487(2005) 205-211. [11] D. F. Barbe, C. R. Westgate, 'Surface state parameters of metal-free phthalocyanine single crystals', Journal of Physics and Chemistry of Solids, 31(1970) 2679. [12] M. L. Petrova, L. D. Rozenshtein, 'Field effect in the organic semiconductor chlooranil', Soviet Physics Solid State, 12(1970) 961-962 (1970). [13] Luisa Petti, Niko Münzenrieder, Christian Vogt, Hendrik Faber, Lars Büthe, Giuseppe Cantarella, Francesca Bottacchi, Thomas D. Anthopoulos, and Gerhard Tröster, 'Metal oxide semiconductor thin-film transistors for flexible electronics', Appl. Phys. Rev. 3, 021303 (2016). [14] Toshio Kamiya, and Hideo Hosono, 'Material characteristics and applications of transparent amorphous oxide semiconductors', NPG Asia Materials, 2(1) (2010)15–22. [15] K.S. Karima, P. Servatib and A. Nathanb, 'High voltage amorphous silicon TFT for use in large area applications', Microelectronics Journal, 35 (2004) 311-315. [16] N. V. Hieu, 'Formation of source and drain of a-Si:H TFT by ion implantation through metal technique', Physica B, 392 (2007) 38-42. [17] S. H. Kim, J. H. Cheon, E. B. Kim, J. H. Bae, J. H. Hur and J. Jang, 'High-performance hydrogenated amorphous silicon TFT on flexible metal foil with polyimide planarization', Journal of Non-Crystalline Solids, 354 (2008) 2529-2533. [18] S. Uchikoga and N. Ibaraki, 'Low temperature poly-Si TFT-LCD by excimer laser anneal',Thin Solid Films, 383 (2001) 19-24. [19] T. Fuyukia, K. Kitajimaa, H. Yanoa, T. Hatayamaa, Y. Uraokaa, S. Hashimotob and Y. Moritab, 'Thermal degradation of low temperature poly-Si TFT', Thin Solid Films, 487 (2005) 216-220. [20] C. C. Tsai, Y. J. Lee, J. L. Wang, K. F. Wei,I. C. Lee ,C. C. Chen and H. C. Cheng, 'High-performance top and bottom double-gate low-temperature poly-silicon thin film transistors fabricated by excimer laser crystallization', Solid-State Electronics, 52 (2008) 365-371. [21] Gilles Horowitz, 'Organic Field-Effect Transistors', Advanced Materials. 1998, 10, No. 5. [22] Hideki Shirakawa, Edwin J. Louis, Alan G. MacDiarmid, Chwan K. Chiang and Alan J. Heeger J. Louis, A. G. Macdiarmid, C.K. Ching, A. J. Heeger, 'Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x', Journal of the Chemical Society, Chemical Communications, (1977) 578-580. [23] F. Ebisawa, T. Kurokawa, and S. Nara, 'Electrical properties of polyacetylene/polysiloxane interface', Journal of Applied Physics, 54 (6), June 1983. [24] R.L. Hoffman, 'Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors', Solid-State Electronics, 50 (2006) 784-787. [25] P. Barquinha, G. Gonçalves, L. Pereira, R. Martins and E. Fortunato, 'Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs', Thin Solid Films, 515 (2007) 8450-8454. [26] H. S. Bae and S. Im, 'Ultraviolet detecting properties of ZnO-based thin film transistors', Thin Solid Films, 469-470 (2004) 75-79. [27] Burag Yaglioglu, Zach Beiley, Sunghwan Lee, 'Amorphous IZO-based transparent thin film transistors', Thin Solid Films 516 (2008) 5894–5898S. [28] Dutta and A. Dodabalapur, 'Zinc tin oxide thin film transistor sensor', Sensors and Actuators B, 143 (2009) 50-55. [29] K. Jang, H. Park, S. Jung, N. V. Duy, Y. Kim, J. Cho, H. Choi, T. Kwon, W. Lee, D. Gong, S. Park, J. Yi, D. Kim and H. Kim,' Optical and electrical properties of 2 wt.% Al2O3-doped ZnO films and characteristics of Al-doped ZnO thin-film transistors with ultra-thin gate insulators', Thin Solid Films, 518 (2010) 2808-2811. [30] Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano and Hideo Hosono, 'Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors', Nature, 432 (2004) 488-492. [31] T. Kamiya, K. Nomura and H. Hosono, 'Present status of amorphous In-Ga-Zn-O thin-film transistors', Science and Technology of Advancedmaterials, 11 (2010) 044305. [32] H. Kawazoe, M, Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, 'P-type electrical conduction in transparent thin films of CuAlO2', Nature, 389 (1997) 939. [33] H. Yanagi, H. Kawazoe, A. Kudo, M. Yaskawa and H. Hosono, 'Chemical Design and Thin Film Preparation of p-Type Conductive Transparent Oxides', Journal of Electroceramics, 4 :2/3 (2000) 407. [34] T. Kamiya and H. Hosono, 'Creation of new functions in transparent oxides utilizing nanostructures embedded in crystal and artificially encoded by laser pulses', International Journal of Applied Ceramic Technolog, 2 (2005) 285. [35] Yang Jiao, Xinan Zhang, Junxia Zhai, Xiankun Yu, Linghong Ding, and Weifeng Zhang, 'Bottom-Gate Amorphous In2O3 Thin Film Transistors Fabricated by Magnetron Sputtering', Electronic Materials Letters, 9 (2013) 279-282. [36] R. L. Hoffman, B. J. Norris, and J. F. Wager, 'ZnO-based transparent thin-film transistors', Applied Physics Letters, 82 (2003) 733. [37] Chang-Jung Kim, Sangwook Kim, Je-Hun Lee, Jin-Seong Park, Sunil Kim, Jaechul Park, Eunha Lee, Jaechul Lee, Youngsoo Park, Joo Han Kim, Sung Tae Shin, and U-In Chung, 'Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors', Applied Physics Letters, 95 (2009) 252103. [38] Y. S. Rim, B.D. Ahn, J.S. Park and H. J. Kim, 'Manifestation of reversal conductivity on high pressurizing of solution-processed ZnSnO thin-film transistors at low Temperature', Journal of Physics D: Applied Physics, 47 (2014) 045502. [39] W. S. Shih, S. J. Young, L. W. Ji, W. Water, and H. W. Shiu, 'TiO2-Based Thin Film Transistors with Amorphous and Anatase Channel Layer', Journal of The Electrochemical Society, 158 (6) H609-H611 (2011). [40] Liu Ao, Liu Guo-Xia, Shan Fu-Kai, Zhu Hui-Hui, B. C. Shin, W. J. Lee, C. R. Cho, 'High-Performance InTiZnO Thin-Film Transistors Deposited by Magnetron Sputtering', Chemical Physics Letters, 30 (2013) 127301. [41] Jiazhen Sheng, Eun Jung Park, Bonggeun Shong, and Jin-Seong Park, 'Atomic Layer Deposition of Indium Gallium Oxide Thin Film for Thin Film Transistor Applications', ACS Applied Materials & Interfaces, 9(2017) 23934−23940. [42] Yuan-Yu Lin, Che-Chen Hsu, Ming-Hung Tseng, Jing-Jong Shyue,, and Feng-Yu Tsai, 'Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition', ACS Applied Materials & Interfaces, 7 ( 2015) 22610−22617. [43] H. Sato, T. Minami, S. Takata and T. Yamada, 'Transparent conducting p type NiO thin films prepared by magnetron sputtering', Thin Solid Films, 236 (1993) 27-31 [44] I-Chung Chiu, and I-Chun Cheng, 'Gate-Bias Stress Stability of P-Type SnO Thin-Film Transistors Fabricated by RF-Sputtering', IEEE Electron Device Letters, 35 (2014) 92-94. [45] Ho-Nyeon Lee, Byeong-Jun Song, and Jae Chul Park, 'Fabrication of p-Channel Amorphous Tin Oxide Thin-Film Transistors Using a Thermal Evaporation Process', Journal of Display Technology, 10 (2014). [46] Kachirayil J. Saji and A. P. Reena Mary, 'Tin Oxide Based P and N-Type Thin Film Transistors Developed by RF Sputtering', ECS Journal of Solid State Science and Technology, 4 (2015) Q101-Q104. [47] H. Luo, L. Y. Liang, Q. Liu, and H. T. Cao, 'Magnetron-Sputtered SnO Thin Films for p-Type and Ambipolar TFT Applications', ECS Journal of Solid State Science and Technology, 3 (2014) Q3091-Q3094. [48] K.C. Sanal, L.S. Vikas, M.K. Jayaraj, 'Room temperature deposited transparent p-channel CuO thin film transistors', Applied Surface Science, 297 (2014) 153–157. [49] Sang Yun Kim, Cheol Hyoun Ahn, Ju Ho Lee, Yong Hun Kwon, Sooyeon Hwang, Jeong Yong Lee, and Hyung Koun Cho, 'p‑Channel Oxide Thin Film Transistors Using Solution-Processed Copper Oxide', ACS Applied Material & Interfaces, 25 (2013) 2417−2421. [50] Tengda Lin, Xiuling Li, and Jin Jang, 'High performance p-type NiOx thin-film transistor by Sn doping', Applied Physics Letters , 108 (2016) 233503. [51] K.C. Sanal, M.K. Jayaraj, 'Room temperature deposited p-channel amorphous Cu1−xCrxO2-δthin film transistors', Applied Surface Science, 315 (2014) 274–278. [52] Z. Q. Yao, B. He, L. Zhang, C. Q. Zhuang, T. W. Ng, S. L. Liu, M.Vogel, A. Kumar, W. J. Zhang, C. S. Lee, S. T. Lee, and X. Jiang, 'Energy band engineering and controlled ptype conductivity of CuAlO2 thin films by nonisovalent CuO alloying', Applied Physics Letters, 100 (2012) 062102. [53] J. Xu, Y. Wang, Z. Li and W. F. Zhang, 'Preparation and electrochemical properties of carbon-doped TiO2 nanotubes as an anode material for lithium-ion batteries', Journal of Power Sources, 175 (2008) 903-908. [54] P. Zeman and S. Takabayashi, 'Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate', Surface and Coatings Technology, 153 (2002) 93-99 [55] A. Wold, 'Photocatalytic properties of TiO2', Chemistry of Materials, 5 (1993) 280-283 [56] A. Sclafani and J. M. Herrmann, 'Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions', Journal of Physical Chemistry, 100 (1996) 13655-13661. [57] N. G. Park, J. van de Lagemaat, and A. J. Frank, 'Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells', Journal of Physical Chemistry B, 104 (2000) 8989-8994. [58] N. Martin, C. Rousselot, C. Savall and F. Palmino, 'Characterizations of titanium oxide films prepared by radio frequency magnetron sputtering', Thin Solid Films, 287 (1996) 154-163. [59] G. Bräuer, M. Ruske, J. Szczyrbowski, G. Teschner and A. Zmelty, 'Mid frequency sputtering with TwinMag®-A survey of recent results',Vacuum, 51 (1998) 655-659. [60] K. Takamura and Y. Abe, 'Influence of oxygen flow ratio on the oxidation of Ti tagrget and the formation process TiO2 film by reactive sputtering', Vacuum, 74 (2004) 397-401. [61] S. P. Denker, 'Electronic properties of titanium monoxide', Journal of Applied Physics, 37(1966)142-149. [62] A. R. Bally, P. Hones, R. Sanjines, P. E. Schmid and F. Levy, 'Mechanical and Electrical Properties of Fcc TiO1+X Thin Films Prepared by r. f. Reactive Sputtering', Surface and Coatings Technology, 205 (1998) 166-170. [63] S. Miyake, T. Kobayash, M. Satou and F. Fujimoto, 'Titanium oxide formation by dynamic ion beam mixing', Journal of Vacuum Science & Technology, 9 (1991) 3036-3040. [64] Q. He, Q. Hao, G. Chen, B. Poudel and X. Wang, 'Thermoelectric property studies on bulk TiOx with x from 1 to 2', Applied Physics Letters, 91 (2007) 052505. [65] J. L. Murray and H. A. Wriedt, 'The O-Ti (oxygen-titanium) system', Bulletin of Alloy Phase Diagrams, 8 (1987) 148-165. [66] R. Tetot and G. Boureau, 'Statistical thermodynamic study of nonstoichiometric titanium monoxide: Determination of formation and interaction energies of vacancies', Physical Review B, 40 (1989) 2311-2320. [67] T. C. Steimle and W. Virgo, 'The permanent electric dipole moments of the X3D; E3P; A3U and B3P states of titanium monoxide, TiO', Chemical Physics Letters, 381 (2003) 30-36. [68] G. Jesús, A. Márquez and J. F. Sanz, 'Role of vacancies in the structural stability of α-TiO: A first-principles study based on density-functional calculations', Physical Review B, 72 (2005) 054117. [69] O. Banakh, P. E. Schmid, R. Sanjine´s and F. Le´vy, 'Electrical and optical properties of TiOx thin films deposited by reactive magnetron sputtering', Surface and Coatings Technology, 52 (2002) 272-280. [70] Qi-Jun Liu, Zheng Ran, Fu-Sheng Liu, Zheng-Tang Liu 'Phase transitions and mechanical stability of TiO2 polymorphs under high pressure', Journal of Alloys and Compounds, 631 (2015) 192–201. [71] Bartholomew, R. F. & Frankl, D. R. 'Electrical Properties of Some Titanium Oxides', Physics Review, 187 (1969) 828–833. [72] Shih, W. S., Young, S. J., Ji, L. W., Water, W. & Shiu, H. W. 'TiO2-based thin film transistors with amorphous and anatase channel layer'. Journal of Electrochemical Society, 158 (2011) H609–H611. [73] Shih, W. S., Young, S. J., Ji, L. W., Water, W., Meen, T. H., Lam, K. T., Sheen, J. & Chu, W. C. 'Thin film transistors based on TiO2 fabricated by using radio-frequency magnetron sputtering', Journal of Physics and Chemistry of Solids, 71 (2010) 1760–1762. [74] Ok, K. C., Park, Y., Chung, K. B. & Park, J. S. 'The effect of Nb doping on the performance and stability of TiOx devices'. Journal of Physics D: Applied Physics, 46 (2013)295102. [75] Chung, S. M., Shin, J. H., Hong, C. H. & Cheong, W. S. 'Thin Film Transistor Based on TiOx Prepared by DC Magnetron Sputtering', Journal of Nanoscience and Nanotechnology, 12 (2012) 5440–5443. [76] Park, J. W., Han, S. W., Jeon, N., Jang, J. & Yoo, S. 'Improved Electrical Characteristics of Amorphous Oxide TFTs Based on TiOx Channel Layer Grown by Low-Temperature MOCVD'. IEEE Electron Device Letters, 29 (2008) 1319–1321. [77] Kim, S. J., Heo, K. J., Yoo, S. C. & Choi, S. G. 'Rutile TiO2 Active-channel Thin-film Transistor Using Rapid Thermal Annealing'. Journal of the Korean Physical Society, 65 (2014) 1118–1121. [78] Hyunwoo Choi, Jaemin Shin and Changhwan Shin, 'Impact of Source Drain Metal Work Function on the Electrical Characteristic of Anatase TiO2-Based Thin film Transistors'. ECS Journal of Solid State Science and Technology, 6 (2017) 379-382. [79] H. Y. Chong and T. W. Kim, 'Electrical Characteristics of Thin-Film Transistors Fabricated Utilizing a UV/Ozone-Treated TiO2 Channel Layer', Journal of Electronic Materials, 42 (2013) 398-402. [80] S. Rickerby and A. Mattews, Advanced Surface Coatings, Chapman and Hall, New York, (1992) 94–95. [81] R. Messier, A. P. Giri, and R. A. Roy, 'Revised structure zone model for thin film physical structure', Journal of Vacuum Science & Technology A, 2 (1984) 500-503. [82] J. A. Thornton, 'Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings', Journal of Vacuum Science and Technology, 11 (1974) 666-670. [83] I. Petrov, A. Myers, J. E. Greene and J. R. Aberlson, 'Mass and energy resolved detection of ions and neutral sputtered species incident at the substrate during reactive magnetron sputtering of Ti in mixed Ar+N2 mixtures', Journal of Vacuum Science & Technology, 12 (1994) 2846-2854. [84] B. Lehnert, 'Rotating plasmas', Nuclear Fusion, 11 (1971) 485-533. [85] W. M. Posadowski, 'Sustained self sputtering of different materials using dc magnetron', Vacuum, 46 (1995) 1017-1020. [86] 藍銀峰,常溫鍍製銦錫氧化物於高分子軟性基板,逢甲大學材料科學與工程學系博士論文,(2010)。 [87] R. Gruen, U.S. Patent No. 5,015,493, 'Process and apparatus for coating conducting pieces using a pulsed glow discharge', (1991). [88] 103 吳錦裕、梁文龍、艾啟峰,'新鍍膜技術-高功率脈衝磁控濺鍍之介紹及研發',真空科技,22 (2009) 24–33。 [89] K. Sarakinos, J. Alami and S. Konstantinidis, 'High power pulsed magnetron sputtering: A review on scientific and engineering state of the art', Surface and Coatings Technology, 204 (2010) 1661–1684. [90] A. Anders, Handbook of plasma immersion ion implantation and deposition: 8 (2000) Ch3. [91] A. Anders, High power impulse magnetron sputtering, Society of Vacuum Coaters Course, (2011). [92] W. D. Sproul, D. J. Chcristie, D. C. Carter, F. Thomasel and T. Linz, 'Pulsed plasma for sputtering application', Surface Engineering, 20 (2004) 174–176. [93] V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson and I. Petrov, 'A novel pulsed magnetron sputter technique utilizing very high target power densities', Surface and Coatings Technology, 122 (1999) 290–293. [94] V. Kouznetsov, 'Method and apparatus for magnetically enhanced sputtering', United Sates, No. 6296742 B1, (2001). [95] J. T. Gudmundsson, 'The high power impulse magnetron sputtering discharge as an ionized physical vapor deposition tool', Vacuum, 84 (2010) 1360–1364. [96] A. Anders, 'A structure zone diagram including plasma-based deposition and ion etching', Thin Solid Films 518 (2010) 4087-4090. [97] I. Veljkovic´, D. Poleti, M. Zdujic´, L. Karanovic´and C. Jovaleki´c, 'Mechanochemical synthesis of nanocrystalline titanium monoxide', Materials Letters, 62 (2008) 2769-2771. [98] V. Straňák, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy and R. Hippler, 'Effect of nitrogen doping on TiOxNy thin film formation at reactive high-power pulsed magnetron sputtering', Journal of Physics D: Applied Physics, 43 (2010) 285203. [99] Y. Wang, Y. Qin, G. Li, Z. Cui and Z. Zhang, 'One-step synthesis and optical properties of blue titanium suboxide nanoparticle', Journal of Crystal Growth, 282 (2005) 402-406. [100] G. S. Chen, C. C. Lee , H. Niu , W. Huang , R. Jann and T. Schütte, 'Sputter deposition of titanium monoxide and dioxide thin films with controlled properties using optical emission spectroscopy', Thin Solid Films, 516 (2008) 8473-8478. [101] K. G. Grigorov, G. I. Grigorov, L. Drajeva, D. Bouchier, R. Sporken and R. Caudano, 'Synthesis and characterization of conductive titanium monoxide films. Diffusion of silicon in titanium monoxide films', Pergamon, 51 (1998) 153-155. [102] F. M. Fuenzalida, C. R. Grahmann, C. Herrera, R. A. Zárate, C. Avila and M. E. Pilleux, 'Room-temperature UHV-deposited titanium monoxide films on oxidized polycrystalline copper', Materials Research Society, 672 (2001) O8.25.1-6. [103] J. Yao, J. Shao, H. He and Z. Fan, 'Optical and electrical properties of TiOx thin films deposited by electron beam evaporation', Science Direct, 81 (2007) 1023-1028. [104] E. M. Asim, 'Optical constants of titanium monoxide TiO thin films', Journal of Alloys and Compounds, 465 (2008) 1-7. [105] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, 'New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer', Alan Jay Heeger, 18 (2006) 572-576. [106] G. Wang, Y. Gong, M. Chen and M. Zhou, 'Methane activation by titanium monoxide molecules: a matrix isolation infrared spectroscopic and theoretical study', Journal of the American Chemical Society, 128 (2006) 5974-5980. [107] A. Anders, J. Andersson and A. Ehiasarian, 'High power impulse magnetron sputtering: Current voltage time characteristics indicate the onset of sustained self-sputtering', Journal of Applied Physics, 102 (2007) 113303. [108] Q. Ma, L. Li, Y. Xu, J. Gu, L. Wang, Y. Xu, 'Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS', Applied Surface Science, 392 (2017) 826–833. [109] J. Lin, W.D. Sproul, J.J. Moore, Z.L. Wu, S.L. Lee, 'Effect ofnegative substrate bias voltage on the structure and properties of CrN films deposited by modulated pulsed power (MPP) magnetron sputtering', Journal of Physics D: Applied Physics, 44 (2011) 425305. [110] K. Sarakinos, J. Alami, S. Konstantinidis, 'High power pulsed magnetron sputtering: a review on scientific and engineering state of the art', Surface and Coatings Technology, 204 (2010) 1661–1684. [111] O. Lemmer, W. Kölker, S. Bolz, C. Schiffers, 'HiPIMS goes production, actual status & outlook', Materials Science and Engineering, 39 (2012) 012003. [112] Z.G. Li, S. Miyake, M. Makino, Y.X. Wu, 'Microstructure and properties of nanocrystalline titanium monoxide films synthesized by inductively coupled plasma assisted reactive direct current magnetron sputtering', Applied Surface Science, 255 (2008) 2370–2374. [113] D.A.H. Hanaor, C.C. Sorrell, 'Review of the anatase to rutile phase transformation', Journal of Materials Science, 46 (2011) 855–874. [114] K.G. Grigorov, G.I. Grigorov, I. Drajeva, D. Bouchier, R. Sporken, R. Caudano, 'Synthesis and characterization of conductive titanium monoxide films. Diffusion of silicon in titanium monoxide films', Vacuum 51 (1998) 153–155. [115] C.J. Chung, H.K. Tsou, H.L. Chen, P.Y. Hsieh, J.L. He, 'Low temperature preparation of phase-tunable and antimicrobial titanium dioxide coating on biomedical polymer implants for reducing implant-related infections', Surface and Coatings Technology, 205 (2011) 5035–5039. [116] A. Surpi, T. Kubart, D. Giordani, M. Tosello, G. Mattei, M. Colasuonno, A. Patelli, 'deposition of TiOx in an industrial-scale apparatus Effects of target size and deposition geometry on hysteresis', Surface & Coatings Technology, 235 (2013) 714-719. [117] M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R. St. C. Smart, 'Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn', Applied Surface Science, 257 (2010) 887–898. [118] T.K. Sham, M.S. Lazarus, 'X-ray photoelectron spectroscopy (XPS) studies of clean and hydrated TiO2 (rutile) surfaces', Chemical Physics Letters, 68 (1979) 426–432. [119] Y. Fu, H. Du, S. Zhang, W. Huang, 'XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate', Materials Science and Engineering: A, 403 (2005) 25–31. [120] V. V. Atuchin, V. G. Kesler, N. V. Pervukhina and Z. Zhang, 'Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides', Journal of Electron Spectroscopy and Related Phenomena, 152 (2006) 18-24. [121] V. Payet, T. Dini, S. Brunner, A. Galtayries, I. Frateur and P. Marcus, 'Pre-treatment of titanium surfaces by fibronectin: in situ adsorption and effect of concentration', Surface and Interface Analysis, 42 (2010) 457-461. [122] J.L. Murray, H.A. Wriedt, 'The O–Ti (oxygen–titanium) system', Bull. Alloy Phase Diagr. 8 (1987) 148–165. [123] M. Aiempanakit, U. Helmersson, A. Aijaz, P. Larsson, R. Magnusson, J. Jensen, T. Kubart,' Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide', Surface and Coatings Technology, 205 (2011) 4828–4831. [124] M. G. Kostenko, A. V. Lukoyanov, V. P. Zhukov, A. A. Rempel, 'Vacancies in ordered and disordered titanium monoxide: mechanism of B1 structure stabilization', Journal of Solid State Chemistry, 204 (2013) 146–152. [125] E.M. Assim,' Optical constants of titanium monoxide TiO thin films', Journal of Alloys and Compounds, 465 (2008) 1–7. [126] P.G. Wu, C.H. Ma, J.K. Shang,' Effects of nitrogen doping on optical properties of TiO2 thin films', Applied Physics A, 81 (2005) 1411–1417. [127] P. Simon, B. Pignon, B. Miao, S. Coste-Leconte, Y. Leconte, S. Marguet, P. Jehou, B. Bouchet-Fabre, C. Reynaud, N. Herlin-Boime, 'N-doped titanium monoxide nanoparticles with TiO rock-salt structure, low energy band gap, and visible light activity', Journal of Materials Chemistry, 22 (2010) 3704–3711. [128] M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, 'Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies', Journal of Materials Chemistry A, 2 (2014) 637–644. [129] J. E. Dominguez, L. Fu and X. Q. Pan, 'Effect of crystal defects on the electrical properties in epitaxial tin dioxide thin films', Applied Physics Letters, 81 (2002) 5168-5170. [130] C. F`abrega, F. H. Ram´ırez, J. D. Prades, R. J. D´ıaz, T. Andreu and J. R. Morante, 'On the photoconduction properties of low resistivity TiO2 nanotubes', Nanotechnology 21 (2010) 445703. [131] W. C. Peng, Y. H. Chen, J. Y. Chen, J. L. He, and D. S. Wuu, 'High power impulse magnetron sputtered p-type γ-titanium monoxide films: Effects of substrate bias and post-annealing on microstructure characteristics and optoelectrical properties', Materials Science in Semiconductor Processing, 61 (2017) 85–92. [132] K. Sarakinos, J. Alami and S. Konstantinidis, 'High power pulsed magnetron sputtering: A review on scientific and engineering state of the art', Surface and Coatings Technology, 204 (2010) 1661–1684. [133] K.J. Sajiz, and A.P.R. Mary, 'Tin oxide based p and n-type thin film transistors developed by RF sputtering', ECS Journal of Solid State Science and Technology, 4 (2015) Q101–Q104. [134] T. Kamiya, and H. Hosono, 'Electronic structures and device applications of transparent oxide semiconductors: what is the real merit of oxide semiconductors?', International Journal of Applied Ceramic Technology, 2 (2005) 285–294.
摘要: 
鈦及相關化合物材料具有優異性質已廣泛應用在建築、機械、電子及光學等領域,為一無毒、經濟且儲量豐富的材料,擁有多樣結構以及優越的光電化學性質,其中二氧化鈦(TiO2)的應用在光觸媒、光伏元件等已備受重視,而一氧化鈦(TiO)具低電阻半導特性及高硬度的優點,可應用於裝飾保護性的鍍膜及低功率的微電子電路。本研究以高功率脈衝磁控濺鍍(HIPIMS)鍍製氧化鈦薄膜,進而發展氧化鈦薄膜電晶體以期應用於光電產業。
首先在不同基材偏壓沉積TiOx薄膜,當偏壓為0~ -100 V時,薄膜結構為p 型立方相一氧化鈦(γ-TiO);因鈦離子的轟擊效應,在高基材偏壓-125 V時,薄膜的氧含量也隨之增加,導致晶體結構由γ-TiO轉變為n型金紅石相二氧化鈦(R-TiO2)。在熱處理方面,薄膜的晶粒尺寸會隨熱處理溫度增加而變大,且在溫度為400 oC時,γ-TiO具有最大的晶粒尺寸,此時薄膜的最佳載子遷移率為8.2 cm2/V。當溫度超過400 oC,薄膜則轉變為R-TiO2,而光學性質也隨結構的改變而變化,γ-TiO薄膜具有可調控的能隙(Eg),其範圍在1.9~2.8 eV,且載子濃度介於7.9×1021 ~ 4.6×1023 cm-3。
其次製備p型和n型TiOx薄膜電晶體,在鍍膜過程中,透過改變氧氣流量可製備p型γ-TiO和n型TiO2薄膜作為薄膜電晶體的通道層,其p型γ-TiO和n型TiO2薄膜電晶體的場效遷移率(μFE) 分別為0.2與0.7 cm2/Vs,且它們的電流開/關比(Ion/Ioff)分別為1.7×104與2.5×105 。研究結果證實HIPIMS提供了生長p型和n型金屬氧化物半導體的可能性,並且大幅拓展該技術的實際應用性。

Titanium and its related compound materials have been widely used in the fields of construction, machinery, electronics and optics. These materials are non-toxic, economical and abundant in nature. They have various crystal structures and superior photoelectrochemical properties. Among them, titanium dioxide (TiO2) is highly valuable for various applications consisting of photocatalysts, dye sensitized solar cell, photovoltaic components, and so on. Additionally, titanium monoxide (TiO) has the advantages such as low electrical resistance and high hardness, which can be applied for decorative protective coatings and low power microelectronic circuits. In this study, titanium oxide films were prepared by high-power impulse magnetron sputtering (HIPIMS) for the fabrication of titanium oxide thin film transistors (TFTs).
Firstly, the TiOx films were deposited at various bias voltages applied to the substrate. When the bias voltage ranging from 0 to -100 V was used, the film was analyzed to p-type γ-TiO. However, due to the bombardment effect of titanium ions, the oxygen content of the film was increased at a high bias voltage of -125 V, resulting in the transition of film's crystal structure from γ-TiO to n-type R-TiO2. On the other hand, after performing the annealing treatment, the grain size of the film was increased with increasing the annealing temperature. When the film was annealed at 400 °C, the γ-TiO possessed the largest grain size and the optimum carrier mobility of 8.2 cm2/V. However, as the annealing temperature was higher than 400 °C, the film's structure was changed from γ-TiO to R-TiO2. In addition, the p-type γ-TiO had a large tenability in the energy bandgap ranging from 1.9 to 2.8 eV, and the carrier concentration of 7.9×1021 ~ 4.6×1023 cm-3 can be obtained in these films.
Furthermore, by varying the oxygen flow rate, p-type γ-TiO and n-type TiO2 films were both prepared by HIPIMS. Furthermore, p- and n-type thin film transistors employing γ-TiO and TiO2 as channel layers possessed the field-effect carrier mobilities of 0.2 and 0.7 cm2/Vs, while their on/off current ratios are 1.7×104 and 2.5×105, respectively. Our work also confirms HIPIMS offers the possibility of growing both p- and n-type conductive oxides, significantly expanding the practical usage of this technique.
URI: http://hdl.handle.net/11455/97964
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-31起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-8099066019-1.pdf4.64 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.