Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97968
標題: 以尿素玻璃法製備鈦鈮氮氧複材於可見光光催化染料降解之研究
Urea-Glass Preparation of Ti-Nb Nitride-Oxide Composites for Visible-Light Dye Photodegradation
作者: 蔡季剛
Chi-Gang Tsai
關鍵字: 尿素玻璃法;氮摻雜;可見光催化;鈦鈮氮氧複材;urea-glass;dye photodegradation;Ti-Nb Nitride-Oxide Composites
引用: [1] K. T. Meilert, D. Laub, and J. Kiwi,'Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers,'Journal of Molecular Catalysis A: Chemical, 237, 101-108 (2005). [2] H. A. Foster, I. B. Ditta, S. Varghese, and A. Steele,'Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity,'Applied Microbiology and Biotechnology, 90, 1847-1868 (2011). [3] S. A. Ansari, M. M. Khan, M. O. Ansaric, and M. H. Cho,'Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis,'New Journal of Chemistry, 40, 3000-3009 (2016). [4] X. Q. Ma, Y. Chen, J. Lee, C. F. Yang, and X. L. Cui,'In situ formation of NbOx@NbN microcomposites: seeking potential in photocatalytic and Li-ion battery applications,'New Journal of Chemistry, 42, 1300-1308 (2018). [5] A. L. Linsebigler, G. Q. Lu, and J. T. Yates,'Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results,'Chemical Reviews, 95, 735-758 (1995). [6] M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, 'Environmental Applications of Semiconductor Photocatalysis,'Chemical Reviews, 95, 69-96 (1995). [7] Y. W. Wang, Y. Huang, W. K. Ho, L. Z. Zhang, Z. G. Zou, and S. C. Lee, 'Biomolecule-controlled hydrothermal synthesis of C–N–S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation,'Journal of Hazardous Materials, 169, 77-87 (2009). [8] C. Su, C. M. Tseng, L. F. Chen, B. H. You, B. C. Hsu, and S. S. Chen, 'Sol–hydrothermal preparation and photocatalysis of titanium dioxide,'Thin Solid Films, 498, 259-265 (2006). [9] H. X. Li, Z. Bain, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li and Y. Lu, 'Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity,'Journal of the American Chemical Society, 129, 8406-8407 (2007). [10] D. H. Chen, L. Cao, F. Z. Huang, P. Imperia, Y. B. Cheng, and R. A. Caruso,'Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm),' Journal of the American Chemical Society, 132, 4438-4444 (2010). [11] D. Behar and J. Rabani,'Kinetics of hydrogen production upon reduction of aqueous TiO2 nanoparticles catalyzed by Pd0, Pt0, or Au0 coatings and an unusual hydrogen abstraction; steady state and pulse radiolysis study,'Journal of Physical Chemistry B, 110, 8750-8755 (2006). [12] Z. Yi, W. Wei, S. Lee, and J. H. Gao,'Photocatalytic performance of plasma sprayed Pt-modified TiO2 coatings under visible light irradiation,'Catalysis Communications, 8, 906-912 (2007). [13] K. Maeda and K. Domen,'New non-oxide photocatalysts designed for overall water splitting under visible light,'Journal of Physical Chemistry C, 111, 7851-7861 (2007). [14] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga,'Visible-light photocatalysis in nitrogen-doped titanium oxides,'Science, 293, 269-271 (2001). [15] C. Giordano and M. Antonietti,'Synthesis of crystalline metal nitride and metal carbide nanostructures by sol-gel chemistry,'Nano Today, 6, 366-380 (2011). [16] S. Podsiadlo,'Stages of the synthesis of gallium nitride with the use of urea,' Thermochimica Acta, 256, 367-373 (1995). [17] S. Podsiadlo,'Stages of the synthesis of indium nitride with the use of urea,' Thermochimica Acta, 256, 375-380 (1995). [18] C. Giordano, C. Erpen, W. T. Yao, B. Milke, and M. Antonietti,'Metal nitride and metal carbide nanoparticles by a soft urea pathway,'Chemistry of Materials, 21, 5136-5144 (2009). [19] C. Giordano, C. Erpen, W. T. Yao, and M. Antoniett,'Synthesis of Mo and W carbide and nitride nanoparticles via a simple 'urea glass' route,'Nano Letters, 8, 4659-4663 (2008). [20] V. Molinari, C. Giordano, M. Antonietti, and D. Esposito'Titanium nitride-nickel nanocomposite as heterogeneous catalyst for the hydrogenolysis of aryl ethers,'Journal of the American Chemical Society, 136, 1758-1761 (2014). [21] J. J. Brancho, A. D. Proctor, S. Panuganti, and B. M. Bartlett,'Urea-glass preparation of titanium niobium nitrides and subsequent oxidation to photoactive titanium niobium oxynitrides,'Dalton Transactions, 46, 12081-12087 (2017). [22] Q. S. Gao, C. Giordano, and M. Antonietti,'Controlled synthesis of tantalum oxynitride and nitride nanoparticles,'Small, 7, 3334-3340 (2011). [23] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann,'Photocatalytic degradation pathway of methylene blue in water,'Applied Catalysis B: Environmental, 31, 145-157 (2001). [24] L. Xiong, Y. Yang, J. X. Mai, W. L. Sun, C. Y. Zhang, D. P. Wei, Q. Chen and J. R. Ni,'Adsorption behavior of methylene blue onto titanate nanotubes,'Chemical Engineering Journal, 156, 313-320 (2010). [25] M. Gratzel,'Photoelectrochemical cells,'Nature, 414, 338-344 (2001). [26] S. L. Shinde, S. Ishii, T. D. Dao, R. P. Sugavaneshwar, T. Takei, K. K. Nanda and T. Nagao,'Enhanced solar light absorption and photoelectrochemical conversion using TiN nanoparticle-incorporated C3N4−C Dot sheets,'Applied Material and interfaces, 10, 2460-2468, (2018). [27] A. Naldoni, U. Guler, Z. X. Wang, M. Marelli, F. Malara, X. G. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva and V. M. Shalaev,'Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride,'Advanced Optical Materials, 5, 1601031 (2017). [28] 陳宥安,多功能氧化鐵@銀@二氧化鈦合殼複合粉體之光催化與抗菌性質研究,國立中興大學材料科學與工程學系碩士論文 (2016)。 [29] B. D. Cullity and S. R. Stock,'Elements of X-ray diffraction,'Prentice Hall, P170-171 (2001) [30] 林君緯,合殼複合氧化鐵@銀@氮摻雜二氧化鈦之染料吸附、可見光催化、磁回收與銀釋放之研究,國立中興大學材料科學與工程學系碩士論文 (2017)。 [31] M. N. Solovan, V. V. Brus, E. V. Maistruk and P. D. Maryanchuk,'Electrical and optical poperties of TiN thin films, 'Inorganic Materials, 50, 40-45 (2014). [32] M. Wittmer, B. Studer and H Melchior,'Electrical characteristics of TiN contacts to N silicon, 'Journal of Applied Physics, 52, 5722-5726 (1981). [33] J. Wang, C. M. Li, J. AO, F. Li and Z. Q. Chen,'Elastic and optical properties of IVB group transition-metal nitrides,'Acta Physica Sinica, 62, 087102 (2013).
摘要: 
本研究以尿素玻璃法製備鈦鈮氮氧複材,藉由控制尿素與金屬前驅物比值 (Urea / Metal precursor, R)調整摻氮量,探討R值對吸收光譜、能隙值及亞甲基藍染料降解等影響,並實驗決定鈦鈮氮氧複材之最佳R值。於此,吾人以尿素玻璃法製備三組條件進行比較: (1) 鈦氮氧複材、 (2) 鈦鈮氮氧複材、 (3) 以鈣離子抑制反應速率合成之鈦鈮氮氧複材。與鈦氮氧複材相比,添加鈮預計可縮減能隙值並提升染料降解效率,另外,鈦鈮氮氧複材以氯化鈣做為鈣離子抑制劑來源時,可藉由抑制尿素之碳氮鍵分離速率以達到降低團聚發生之目的,吾人並觀察氯化鈣於尿素玻璃法中扮演何種角色。
結果顯示,鈦氮氧複材與鈦鈮氮氧複材在R=1-6比較時,添加鈮之能隙值由2.75-2.45 eV縮減至2.60-2.40 eV,吸收邊界則由430-480 nm延伸至470-510 nm。吾人將鈦鈮氮氧複材之R值由1-6細分為9組,於R=3-3.5時,吸收邊界延伸至520 nm及能隙值縮減至2.40 eV,相比R=1時,其可見光光催化亞甲基藍染料降解效率由1%提升至17-19%,故R=3-3.5為具最佳光學性質之R值。至於鈣離子添加雖如預期具抑制尿素碳氮鍵分離效果,幫助降低團聚效應,但由於均勻的氨基氛圍使鈦鈮氮氧複材於R=4時僅以氮化鈦結構形成,另外,氯化鈣會以前驅物型式參與反應進而形成具鈣鈦礦結構之副產物。

In this study, Ti-Nb nitride-oxide composites were prepared by urea glass method. By controlling the ratio of urea to metal precursor (R), Ti-Nb nitride-oxide composites of different nitrogen doping levels were obtained. Absorption, band gap and organic dye photodegradation were examined in order to find the most suitable R for the Ti-Nb nitride-oxide composites. Three types of composites were prepared for comparison: (1) Ti nitride-oxide composites, (2) Ti-Nb nitride-oxide composites, and (3) Ti-Nb nitride-oxide composites with Ca-assisted preparation. The purpose was to examine whether incorporation of Nb in Ti nitride-oxide composites can obtain better optical properties and organic dye photodegradation efficiency when comparing to the Ti nitride-oxide composites. In addition, we would like to make sure whether Ca-assisted route can inhibit C-N bond release of urea and homogenize the particle-size distribution.
Our results showed that, comparing with Ti nitride-oxide composites, Ti-Nb nitride-oxide composites of different R ratios (R=1-6) reduced the band gap from 2.75-2.45 eV to 2.60-2.40 eV and had extended the absorption edge from 430-480 nm to 470-510 nm. Furthermore, it was found that Ti-Nb nitride-oxide composites of R=3-3.5 had extended the absorption edge to nearly 520 nm, and the band gap reduced to 2.40 eV. Photodegradation efficiency against methylene-blue dye increased from 1% for composites with R=1 to 17-19% for composites with R=3-3.5, that R=3-3.5 had the best optical performance. Although Ca-assisted which indicate route can homogenize particle-size, the gradually released C-N bond would let metal precursors surrounded by -NH2. This result in formation of TiN at R=4. In addition, CaCl2 facilitated formation of CaTiO3.
URI: http://hdl.handle.net/11455/97968
Rights: 同意授權瀏覽/列印電子全文服務,2019-08-23起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-5105066020-1.pdf8.73 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.