Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorWeajea J. Tsengen_US
dc.contributor.authorChi-Gang Tsaien_US
dc.identifier.citation[1] K. T. Meilert, D. Laub, and J. Kiwi,'Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers,'Journal of Molecular Catalysis A: Chemical, 237, 101-108 (2005). [2] H. A. Foster, I. B. Ditta, S. Varghese, and A. Steele,'Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity,'Applied Microbiology and Biotechnology, 90, 1847-1868 (2011). [3] S. A. Ansari, M. M. Khan, M. O. Ansaric, and M. H. Cho,'Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis,'New Journal of Chemistry, 40, 3000-3009 (2016). [4] X. Q. Ma, Y. Chen, J. Lee, C. F. Yang, and X. L. Cui,'In situ formation of NbOx@NbN microcomposites: seeking potential in photocatalytic and Li-ion battery applications,'New Journal of Chemistry, 42, 1300-1308 (2018). [5] A. L. Linsebigler, G. Q. Lu, and J. T. Yates,'Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results,'Chemical Reviews, 95, 735-758 (1995). [6] M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, 'Environmental Applications of Semiconductor Photocatalysis,'Chemical Reviews, 95, 69-96 (1995). [7] Y. W. Wang, Y. Huang, W. K. Ho, L. Z. Zhang, Z. G. Zou, and S. C. Lee, 'Biomolecule-controlled hydrothermal synthesis of C–N–S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation,'Journal of Hazardous Materials, 169, 77-87 (2009). [8] C. Su, C. M. Tseng, L. F. Chen, B. H. You, B. C. Hsu, and S. S. Chen, 'Sol–hydrothermal preparation and photocatalysis of titanium dioxide,'Thin Solid Films, 498, 259-265 (2006). [9] H. X. Li, Z. Bain, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li and Y. Lu, 'Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity,'Journal of the American Chemical Society, 129, 8406-8407 (2007). [10] D. H. Chen, L. Cao, F. Z. Huang, P. Imperia, Y. B. Cheng, and R. A. Caruso,'Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm),' Journal of the American Chemical Society, 132, 4438-4444 (2010). [11] D. Behar and J. Rabani,'Kinetics of hydrogen production upon reduction of aqueous TiO2 nanoparticles catalyzed by Pd0, Pt0, or Au0 coatings and an unusual hydrogen abstraction; steady state and pulse radiolysis study,'Journal of Physical Chemistry B, 110, 8750-8755 (2006). [12] Z. Yi, W. Wei, S. Lee, and J. H. Gao,'Photocatalytic performance of plasma sprayed Pt-modified TiO2 coatings under visible light irradiation,'Catalysis Communications, 8, 906-912 (2007). [13] K. Maeda and K. Domen,'New non-oxide photocatalysts designed for overall water splitting under visible light,'Journal of Physical Chemistry C, 111, 7851-7861 (2007). [14] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga,'Visible-light photocatalysis in nitrogen-doped titanium oxides,'Science, 293, 269-271 (2001). [15] C. Giordano and M. Antonietti,'Synthesis of crystalline metal nitride and metal carbide nanostructures by sol-gel chemistry,'Nano Today, 6, 366-380 (2011). [16] S. Podsiadlo,'Stages of the synthesis of gallium nitride with the use of urea,' Thermochimica Acta, 256, 367-373 (1995). [17] S. Podsiadlo,'Stages of the synthesis of indium nitride with the use of urea,' Thermochimica Acta, 256, 375-380 (1995). [18] C. Giordano, C. Erpen, W. T. Yao, B. Milke, and M. Antonietti,'Metal nitride and metal carbide nanoparticles by a soft urea pathway,'Chemistry of Materials, 21, 5136-5144 (2009). [19] C. Giordano, C. Erpen, W. T. Yao, and M. Antoniett,'Synthesis of Mo and W carbide and nitride nanoparticles via a simple 'urea glass' route,'Nano Letters, 8, 4659-4663 (2008). [20] V. Molinari, C. Giordano, M. Antonietti, and D. Esposito'Titanium nitride-nickel nanocomposite as heterogeneous catalyst for the hydrogenolysis of aryl ethers,'Journal of the American Chemical Society, 136, 1758-1761 (2014). [21] J. J. Brancho, A. D. Proctor, S. Panuganti, and B. M. Bartlett,'Urea-glass preparation of titanium niobium nitrides and subsequent oxidation to photoactive titanium niobium oxynitrides,'Dalton Transactions, 46, 12081-12087 (2017). [22] Q. S. Gao, C. Giordano, and M. Antonietti,'Controlled synthesis of tantalum oxynitride and nitride nanoparticles,'Small, 7, 3334-3340 (2011). [23] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann,'Photocatalytic degradation pathway of methylene blue in water,'Applied Catalysis B: Environmental, 31, 145-157 (2001). [24] L. Xiong, Y. Yang, J. X. Mai, W. L. Sun, C. Y. Zhang, D. P. Wei, Q. Chen and J. R. Ni,'Adsorption behavior of methylene blue onto titanate nanotubes,'Chemical Engineering Journal, 156, 313-320 (2010). [25] M. Gratzel,'Photoelectrochemical cells,'Nature, 414, 338-344 (2001). [26] S. L. Shinde, S. Ishii, T. D. Dao, R. P. Sugavaneshwar, T. Takei, K. K. Nanda and T. Nagao,'Enhanced solar light absorption and photoelectrochemical conversion using TiN nanoparticle-incorporated C3N4−C Dot sheets,'Applied Material and interfaces, 10, 2460-2468, (2018). [27] A. Naldoni, U. Guler, Z. X. Wang, M. Marelli, F. Malara, X. G. Meng, L. V. Besteiro, A. O. Govorov, A. V. Kildishev, A. Boltasseva and V. M. Shalaev,'Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride,'Advanced Optical Materials, 5, 1601031 (2017). [28] 陳宥安,多功能氧化鐵@銀@二氧化鈦合殼複合粉體之光催化與抗菌性質研究,國立中興大學材料科學與工程學系碩士論文 (2016)。 [29] B. D. Cullity and S. R. Stock,'Elements of X-ray diffraction,'Prentice Hall, P170-171 (2001) [30] 林君緯,合殼複合氧化鐵@銀@氮摻雜二氧化鈦之染料吸附、可見光催化、磁回收與銀釋放之研究,國立中興大學材料科學與工程學系碩士論文 (2017)。 [31] M. N. Solovan, V. V. Brus, E. V. Maistruk and P. D. Maryanchuk,'Electrical and optical poperties of TiN thin films, 'Inorganic Materials, 50, 40-45 (2014). [32] M. Wittmer, B. Studer and H Melchior,'Electrical characteristics of TiN contacts to N silicon, 'Journal of Applied Physics, 52, 5722-5726 (1981). [33] J. Wang, C. M. Li, J. AO, F. Li and Z. Q. Chen,'Elastic and optical properties of IVB group transition-metal nitrides,'Acta Physica Sinica, 62, 087102 (2013).zh_TW
dc.description.abstract本研究以尿素玻璃法製備鈦鈮氮氧複材,藉由控制尿素與金屬前驅物比值 (Urea / Metal precursor, R)調整摻氮量,探討R值對吸收光譜、能隙值及亞甲基藍染料降解等影響,並實驗決定鈦鈮氮氧複材之最佳R值。於此,吾人以尿素玻璃法製備三組條件進行比較: (1) 鈦氮氧複材、 (2) 鈦鈮氮氧複材、 (3) 以鈣離子抑制反應速率合成之鈦鈮氮氧複材。與鈦氮氧複材相比,添加鈮預計可縮減能隙值並提升染料降解效率,另外,鈦鈮氮氧複材以氯化鈣做為鈣離子抑制劑來源時,可藉由抑制尿素之碳氮鍵分離速率以達到降低團聚發生之目的,吾人並觀察氯化鈣於尿素玻璃法中扮演何種角色。 結果顯示,鈦氮氧複材與鈦鈮氮氧複材在R=1-6比較時,添加鈮之能隙值由2.75-2.45 eV縮減至2.60-2.40 eV,吸收邊界則由430-480 nm延伸至470-510 nm。吾人將鈦鈮氮氧複材之R值由1-6細分為9組,於R=3-3.5時,吸收邊界延伸至520 nm及能隙值縮減至2.40 eV,相比R=1時,其可見光光催化亞甲基藍染料降解效率由1%提升至17-19%,故R=3-3.5為具最佳光學性質之R值。至於鈣離子添加雖如預期具抑制尿素碳氮鍵分離效果,幫助降低團聚效應,但由於均勻的氨基氛圍使鈦鈮氮氧複材於R=4時僅以氮化鈦結構形成,另外,氯化鈣會以前驅物型式參與反應進而形成具鈣鈦礦結構之副產物。zh_TW
dc.description.abstractIn this study, Ti-Nb nitride-oxide composites were prepared by urea glass method. By controlling the ratio of urea to metal precursor (R), Ti-Nb nitride-oxide composites of different nitrogen doping levels were obtained. Absorption, band gap and organic dye photodegradation were examined in order to find the most suitable R for the Ti-Nb nitride-oxide composites. Three types of composites were prepared for comparison: (1) Ti nitride-oxide composites, (2) Ti-Nb nitride-oxide composites, and (3) Ti-Nb nitride-oxide composites with Ca-assisted preparation. The purpose was to examine whether incorporation of Nb in Ti nitride-oxide composites can obtain better optical properties and organic dye photodegradation efficiency when comparing to the Ti nitride-oxide composites. In addition, we would like to make sure whether Ca-assisted route can inhibit C-N bond release of urea and homogenize the particle-size distribution. Our results showed that, comparing with Ti nitride-oxide composites, Ti-Nb nitride-oxide composites of different R ratios (R=1-6) reduced the band gap from 2.75-2.45 eV to 2.60-2.40 eV and had extended the absorption edge from 430-480 nm to 470-510 nm. Furthermore, it was found that Ti-Nb nitride-oxide composites of R=3-3.5 had extended the absorption edge to nearly 520 nm, and the band gap reduced to 2.40 eV. Photodegradation efficiency against methylene-blue dye increased from 1% for composites with R=1 to 17-19% for composites with R=3-3.5, that R=3-3.5 had the best optical performance. Although Ca-assisted which indicate route can homogenize particle-size, the gradually released C-N bond would let metal precursors surrounded by -NH2. This result in formation of TiN at R=4. In addition, CaCl2 facilitated formation of CaTiO3.en_US
dc.description.tableofcontents摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vii 第一章 緒論 1 一、 前言 1 二、 研究動機 1 第二章 文獻回顧 2 一、 二氧化鈦特性及其光催化機制 2 (一)、 二氧化鈦之晶體結構 2 (二)、 二氧化鈦之光催化機制 3 二、 二氧化鈦複合材料之文獻整理 5 (一)、 過渡金屬摻雜 5 (二)、 非金屬摻雜 6 三、 尿素玻璃法 8 四、 二氧化鈦對於亞甲基藍染料之光降解 12 五、 氮化鈦於光催化之角色 14 六、 光催化動力學-Langmuir-Hinshelwood動力學模型 16 第三章 實驗儀器與分析儀器介紹 18 一、 實驗藥品 18 二、 製程設備 19 三、 分析儀器 20 第四章 實驗流程 21 一、 尿素玻璃法製備樣品 21 二、 鈦氮氧複材製備方法 22 三、 鈦鈮氮氧複材製備方法 23 四、 以鈣離子抑制反應之鈦鈮氮氧複材製備方法 24 五、 吸收光譜測定實驗 25 六、 亞甲基藍檢量線製作 26 七、 亞甲基藍染料降解 27 第五章 結果 28 一、 XRD分析 28 二、 吸收光譜與能隙測定 31 三、 有機染料亞甲基藍之檢量線 33 四、 氙燈光源波長-可見光 33 五、 亞甲基藍可見光降解 34 六、 SEM分析 37 七、 TEM分析 41 八、 BET分析 42 第六章 討論 44 一、 TN之R值改變對於可見光光催化亞甲基藍染料降解之影響 44 二、 TN樣品之XRD晶粒尺寸與特徵峰比較 49 三、 TN之樣品於可見光光催化亞甲基藍染料降解之動力學分析 51 四、 Nb與N摻雜方式之影響 53 五、 複合材料中氮化鈦其性質與影響 54 第七章 結論 56 第八章 參考文獻 57zh_TW
dc.subjectdye photodegradationen_US
dc.subjectTi-Nb Nitride-Oxide Compositesen_US
dc.titleUrea-Glass Preparation of Ti-Nb Nitride-Oxide Composites for Visible-Light Dye Photodegradationen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:材料科學與工程學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-5105066020-1.pdf8.73 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.