Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97972
標題: 討論高穿透度藍相液晶的光學特性
Discussion on the optical properties in high-transmittance blue phase II
作者: 杜浩宇
Hao-Yu Tu
關鍵字: 電光特性;晶格藍相液晶(BPII);electro-optical characteristic;Cubic Blue Phase(BPII)
引用: [1] O. Henrich, K. Stratford, M. E. Cates, and D. Marenduzzo, 'Structure of blue phase III of cholesteric Liquid Crystal' Phys. Rev. Lett. 106, 107801 (2011). [2] H. Choi, H. Higuchi, and H. Kikuchi, 'Fast electro-optic switching in liquid crystal blue phase II' Appl. Phys. Lett. 98, 131905 (2011). [3] H. J. Coles and H. F. Gleeson. 'Electric field induced phase transitions and colour switching in the blue phases of chiral nematic liquid crystals'. Liq. Cryst., 167, 213–225 (1989). [4] H. Kitzerow, and C. Bahr, Chirality in Liquid Crystals, (Springer Science & Business Media, 2006) [5] R. J. Miller and H. F. Gleeson, 'Order parameter measurements from the Kossel diagrams of the liquid-crystal blue phases' Phys. Rev. E. 52 5 (1995). [6] J. Coles, and N. Pivnenko, 'Liquid crystal 'blue phases' with a wide temperature range' Nature letters. 436, 997–1000 (2005). [7] H. Y. Chen, J. L. Lai, C. C. Chan, and C. H. Tseng ,'Fast tunable reflection in amorphous blue phase III liquid crystal,' J. Appl. Phys., 113, 123103(2013) [8] H. C. Jeong, S. Aya, S. Kang, F. Araoka, K. Ishikawa, and H. Takezoe 'Are chiral dopants with higher twisting power advantageous to induce wider temperature range of the blue phases?' Liq. Cryst.. 40, 951–958, (2013). [9] H. Y. Chen, H. H. Liu, J. L. Lai, C. H. Chiu, and J. Y. Chou, 'Relation between physical parameters and temperature of liquid-crystal blue phase,' Appl. Phys. Lett. 97, 181919 (2010). [10] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang,and T. Kajiyama, 'Polymer-stabilized blue-phase liquid crystal,' Nature Mater, 1, 64–68 (2002). [11] Y. Hisakado, H. Kikuchi, T. Nagamura, T. Kajiyama, 'Large electro optic kerr effect in polymer stabilized liquid crystalline blue phases,' Adv. Mater. 17, 96–98 (2005). [12] H. Y. Chen, J. Y. Chiou, and K. X. Yang, 'Reversible and fast shift in reflection band of a cubic blue phase in a vertical electric field,' Appl.Phys. Lett. 99, 181119 (2011). [13] H. S. Chen, Y.H. Lin, C.H. Wu, M. Chen, and H.K. Hsu, 'Hysteresis-free polymer-stabilized blue phase liquid crystals using thermal recycles' Opt. Mater. Express.2, 1149–1155 (2012). [14] J. Yan, H. C. Chang, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, 'Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,' Appl. Phys. Lett. 96, 071105 (2010). [15] G. Nordendorf, A. Lorenz, 1 A. Hoischen, J. Schmidtke, H. Kitzerow, D. Wilkes, and M. Wittek. 'Hysteresis and memory factor of the kerr effect in blue phases'. J. Appl. Phys., 114;173104, (2013). [16] K. M. Chen, S. Gauze, H. Xianyu, and S. T. Wu,' Hysteresis Effects in Blue-Phase Liquid Crystals,' ¬J. Disp. Technol., 6, 318 ─ 322, 2010. [17] K. Orzechowski, M. W. Sierakowski, M. S. Tefelska, P. Joshi, T. R. Wolinski and H. D. Smet , 'Polarization properties of cubic blue phases of a cholesteric liquid crystal' Optical Materials 69, 259–264 (2017). [18] P. R. Gerber, Mol. Cryst. Liq. Cryst. 116, 197 (1985). [19] C. Bohley and T. Scharf, 'Polarization of light reflected by cholesteric blue phases' J. Opt. A: Pure Appl. S77–S80 (2004). [20] S. Meiboom, J. P. Sethna, P.W. Anderson and W. F.Brinkman. 'Theory of the Blue Phase of Cholesteric Liquid Crystals' Phys. Rev. Lett 46 18(1981). [21] B. Jerȏrme and P. Pieranski. 'Kossel diagrams of blue phases' Liq. cryst. 5, 799-812 (1989). [22] H. Y. Chen, J. L. Lai, C. C. Chan, and C. H. Tseng, 'Fast tunable reflection in amorphous blue phase III liquid crystal,' J. Appl. Phys,113 , 123103, (2013). [23] H. C. Jeonga, S. Ayaa, S. Kanga, F. Araokaa, K. Ishikawaa, and H. Takezoea, 'Are chiral dopants with higher twisting power advantageous to induce wider temperature range of the blue phases,'Liq. Cryst., 40, p. 951, (2013). [24] 曾志翰, 液晶物理特性與藍相液晶之關係。 (逢甲大學光電學系碩士班; 2013.) [25] Edmundoptics, Introduction to Polarization, (Edmundoptics, 2017) https://www.edmundoptics.com/resources/application-notes/optics/introduction-to-polarization/. [26] Thorlabs Gmbh, Polarization analyzing system operation manual, (Thorlabs, 2005) [27] P. P. Crooker, Chirality in Liquid Crystal¬ , (Springer, NY, 2001). [28] H. S. Kitzerow, P. P. Crooker, and S. L. Kwok, 'Dynamics of blue-phase selective reflections in an electric field' Phys. Rev. A 42,3442(1990). [29] Z. Ge, L. Rao, S. Gauza, and S. T. Wu, 'Modeling of Blue Phase Liquid Crystal Displays' J. Disp. Technol., 5, 7 (2009). [30] J. Yan, H. C. Chang, S. Gauza, Y. Li, M. Jiao, L. Rao, S. T. Wu, 'Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,' Appl. Phys. Lett. 96, 071105 (2010). [31] D. Xu, Y. Chen, Y. Liu, and S. T. Wu, 'Refraction effect in an in-plane-switching blue phase liquid crystal cell' Opt. Express. 21, 24721-24735 (2013) [32] 呂昇峰, 室溫型霧狀藍相液晶(BPIII)光電特性. (逢甲大學光電學系碩士班), 2015. [33] K. Orzechowski, M. W. Sierakowski, M. S. Tefelska, P. Joshi, T. R. Wolinski, and H. D. Smet , 'Polarization properties of cubic blue phases of a cholesteric liquid crystal' Opt. Mater. 69 259–264 (2017). [34] J. Yan, S. T. Wu, K. L. Cheng, and J. W. Shiu, 'A full-color reflective display using polymer-stabilized blue phase liquid crystal' Appl. Phys. Lett. 102, 081102 (2013). [35] H. S. Kitzerow, 'The effect of electric fields in blue phases,'Liq.Cryst. 202, 51(1991).
摘要: 
本論文選用不須添加額外高分子或奈米粒子之液晶材料,僅利用旋光性分子製備出藍相液晶樣品,排除添加物對樣品之電光特性的影響,並成功產生溫寬達7 ℃之BPII樣品。
在實驗中同時利用升降溫光譜法和晶格繞射法鑑定溫寬,並推算其產生繞射的晶格面,施加一垂直電場後觀察其電場強度與反射波長位移量之關係;又因反射波長位移量和晶格扭曲量相關。可推得外加電場強度和晶格變動之關係。施加一水平電場後觀察其電光效應,其光強度和電場強度增加而增加,但不完全符合克爾效應,晶格反射和電場誘發複折射率同時影響光強度。

In this study, temperature range and electro-optical performance on a thermally stable cubic blue phase(BPII) are measured. Based on our experiment, it exhibits a great transmittance and fast response time. In order to interpret the electro-optical effect, we use the polarimetery to detect the polarization states under different incident wavelengths.
We use both reflection spectra and Kossel diagram to identify the temperature range, applied vertical electric field to measure the relationship between electric field and reflection wavelength shift. We also measure the electro-optical response of IPS-BPII cell. The transmittance increase with increasing the electric field. Due to the optical retardation, the short incidence wavelength exhibits highest transmittance.
URI: http://hdl.handle.net/11455/97972
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:物理學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105054027-1.pdf4.72 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.