Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97973
標題: 超短程垂直式石墨烯約瑟芬接面
Ultimately short vertical graphene Josephson Junctions
作者: 謝昀璉
Yun-Lien Hsieh
關鍵字: 約瑟芬接面;石墨烯;josephson junction;graphene
引用: 1. C.D. Reintsema, R.H.O., G. Barnes, L. Borcherdt, T.E. Harvey, G. Kunkel, D.A. Rudman, and L.R. Vale, The Critical Current and Normal Resistance of High-Tc Step-Edge SNS Junctions. IEEE transaction on applied superconductivity, 1995. 5: p. 5. 2. Likharev, K.K., Superconducting weak links. Reviews of Modern Physics, 1979. 51(1): p. 101-159. 3. Kroger, H., L.N. Smith, and D.W. Jillie, Selective niobium anodization process for fabricating Josephson tunnel junctions. Applied Physics Letters, 1981. 39(3): p. 280-282. 4. Morohashi, S.i., S. Hasuo, and T. Yamaoka, Self‐aligned contact process for Nb/Al‐AlOx/Nb Josephson junctions. Applied Physics Letters, 1986. 48(3): p. 254-256. 5. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proc Natl Acad Sci U S A, 2005. 102(30): p. 10451-3. 6. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200. 7. Chen, X., L. Zhang, and S. Chen, Large area CVD growth of graphene. Synthetic Metals, 2015. 210: p. 95-108. 8. Heersche, H.B., et al., Bipolar supercurrent in graphene. Nature, 2007. 446(7131): p. 56-9. 9. L.N. Smith, J.B.T., D.W. Jillie, and H. Kroger, Sputtered a-silicon tunneling barriers for Nb-Nb Johsephson Junctions. IEEE transactions on magnetics, 1982. Mag-18: p. 6. 10. Braginski, J.C.a.A.I., The-SQUID-Handbook-vol1 Fundamentals and Technology of SQUIDs and SQUID Systems, 2004, WILEY-VCH Verlag GmbH & Co. KGaA. 11. L.S. Yu, C.J.B.R.E.D., K. Li, R. Patt, and S.R.W. M. Radparvar, and S.M. Faris, AN ALL-NIOBIUM EIGHT LEVEL PROCESS FOR SMALL AND MEDIUM SCALE APPLICATION. IEEE transcations on magnectics, 1986. mag-23: p. 4. 12. Niemeyer, J.a.H., H., Processing and manufacture of Josephson junctions:low Tc, in Handbook of Superconductiong Materials, in Institute of Physics Publishing2002, Bristol, UK. p. 9. 13. Shoji, A., et al., New fabrication process for Josephson tunnel junctions with (niobium nitride, niobium) double‐layered electrodes. Applied Physics Letters, 1982. 41(11): p. 1097-1099. 14. Gurvitch, M., M.A. Washington, and H.A. Huggins, High quality refractory Josephson tunnel junctions utilizing thin aluminum layers. Applied Physics Letters, 1983. 42(5): p. 472-474. 15. van der Zant, H.S., et al., Field-induced superconductor-to-insulator transitions in Josephson-junction arrays. Phys Rev Lett, 1992. 69(20): p. 2971-2974. 16. 徐家儀, 應用於量子位元中約瑟芬接合之製作與特性量測. 2011. 17. Novoselov, K.S., et al., A roadmap for graphene. Nature, 2012. 490(7419): p. 192-200. 18. Andres Castellanos-Gomez, M.B., Rianda Molenaar, Vibhor Singh, Laurens Janssen, Herre S. J. van der Zant and Gary A.Steele., Deterministic transfer of 2D materials by all dry viscoelastic stamping. 2D Materials, 2014. 19. Reeves, C., graphene-characterization after mechanical exfoliation, 2010. 20. Singh, V., et al., Graphene based materials: Past, present and future. Progress in Materials Science, 2011. 56(8): p. 1178-1271. 21. Beenakker, C.W.J., Colloquium: Andreev reflection and Klein tunneling in graphene. Reviews of Modern Physics, 2008. 80(4): p. 1337-1354. 22. Mizuno, N., B. Nielsen, and X. Du, Ballistic-like supercurrent in suspended graphene Josephson weak links. Nat Commun, 2013. 4: p. 2716. 23. Deon, F., S. Sopic, and A.F. Morpurgo, Tuning the influence of microscopic decoherence on the superconducting proximity effect in a graphene Andreev interferometer. Phys Rev Lett, 2014. 112(12): p. 126803. 24. Zheng Han Adrien Allain, H.A.-T.K.T., Mikhail Feigel'man and B.S.a.V. Bouchiat, Collapse of superconductivity in a hybridtin–graphene Josephson junction array. nature physics, 2014. 25. Lee, G.H., et al., Continuous and reversible tuning of the disorder-driven superconductor-insulator transition in bilayer graphene. Sci Rep, 2015. 5: p. 13466. 26. Thompson, M.D., et al., Graphene-based tunable SQUIDs. Applied Physics Letters, 2017. 110(16): p. 162602. 27. Lee, G.H., et al., Ultimately short ballistic vertical graphene Josephson junctions. Nat Commun, 2015. 6: p. 6181. 28. Nguyen, L.N., et al., Resonant tunneling through discrete quantum states in stacked atomic-layered MoS2. Nano Lett, 2014. 14(5): p. 2381-6. 29. Myoung, N., H.C. Park, and S.J. Lee, Gate-Tunable Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures. Sci Rep, 2016. 6: p. 25253. 30. WolfgangMehr, J.D., J. Christoph Scheytt, Member, IEEE, Gunther Lippert,, S.M. Ya-Hong Xie, IEEE,Max C. Lemme, Senior Member, IEEE,, and F. Mikael Ostling, IEEE, and Grzegorz Lupina, Vertical Graphene Base Transistor. ieee electron device letters, 2012. 35(5). 31. Blech, I.A., Electromigration in thin aluminum films on titanium nitride. Journal of Applied Physics, 1976. 47(4): p. 1203-1208. 32. Nguyen, L.N., et al., Photo-response of a nanopore device with a single embedded ZnO nanoparticle. Nanotechnology, 2012. 23(16): p. 165201. 33. Schwierz, F., J. Pezoldt, and R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015. 7(18): p. 8261-83. 34. Shimada, H., et al., Characterization of superconducting single-electron transistors with small Al/AlO$_{x}$/V Josephson junctions. Superconductor Science and Technology, 2014. 27(11): p. 115015. 35. Lin, Y.-H., J. Nelson, and A.M. Goldman, Superconductivity of very thin films: The superconductor–insulator transition. Physica C: Superconductivity and its Applications, 2015. 514: p. 130-141. 36. 蔡政宏, 微機電製程應用於薄膜體聲波元件之研究, in 電機工程學系2006, 國立中山大學. 37. Ralph, D.C., C.T. Black, and M. Tinkham, Spectroscopic measurements of discrete electronic states in single metal particles. Phys Rev Lett, 1995. 74(16): p. 3241-3244. 38. Shouvik Banerjee, J.S., Jose Rivera, Xiaozhong Jin, Z. David Estrada, Vita Solovyeva,Xueqiu You,r James Pak,r Eric Pop,Narayana Aluru,z, and Rashid Bashir, Electrochemistry at the Edge of a Single Graphene Layer in a Nanopore. NANO, 2013. 7(1): p. 10. 39. Ayari-Kanoun, A., et al., Silicon nitride nanotemplate fabrication using inductively coupled plasma etching process. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2011. 29(5): p. 051802. 40. Harris, C.T., et al., Fabrication of a nanostructure thermal property measurement platform. Nanotechnology, 2011. 22(27): p. 275308. 41. Kim, J.S., et al., An Organic Vertical Field-Effect Transistor with Underside-Doped Graphene Electrodes. Adv Mater, 2016. 28(24): p. 4803-10. 42. 謝昀璉, 化學氣相沉積石墨烯的電傳輸特性, in 國立中興大學物理學系所2011, 國立中興大學. 43. Sukang Bae, H.K., Youngbin Lee, Roll to roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010. 5. 44. Lee, Y., et al., Wafer-scale synthesis and transfer of graphene films. Nano Lett, 2010. 10(2): p. 490-3. 45. 江丞偉, 自組裝奈米金粒子的電傳輸特性與其應用, in 國立中興大學物理學系所2014. 46. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355. 47. Yao, J., et al., Resistive switches and memories from silicon oxide. Nano Lett, 2010. 10(10): p. 4105-10. 48. 陳駿銘, 石墨烯量子點系統的新穎製程研究, in 國立彰化師範大學物理學系2012, 國立彰化師範大學. 49. Komatsu, K., et al., Superconducting proximity effect in long superconductor/graphene/superconductor junctions: From specular Andreev reflection at zero field to the quantum Hall regime. Physical Review B, 2012. 86(11). 50. Gennes, P.G.d., Superconductivity Of Metals And Alloys1989.
摘要: 
本實驗我們嘗試製作超短程垂直式石墨烯約瑟芬接面,首先在矽基板上製作出懸空的氮化矽薄膜結構並鑿孔,將二維材料覆蓋到孔洞上,最後在矽基板的正面及背面上鍍超導材料,形成一個約瑟芬接面結構。
懸空結構是在雙面成長氮化矽薄膜的矽基板上,先利用光學微影搭配乾蝕刻氮化矽製程在晶片背面開一個750μm×750μm大小的窗口,再將晶圓泡入90℃20%氫氧化鉀溶液中蝕刻500μm厚的矽,直到晶片正面出現80μm×80μm的懸浮氮化矽薄膜。我們使用兩種孔洞製作方式:將穿透式電子顯微鏡的電子束聚焦在懸浮氮化矽薄膜上可刻出約直徑100nm孔洞,此製作方式的優點是過程中都沒有使用光阻可免於化學物質汙染;另一種方法則是在懸浮結構進行氫氧化鉀濕蝕刻前,將有電極圖案的基板利用電子束顯影術以及乾式蝕刻將孔洞製作在氮化矽/矽基板上,再進行濕蝕刻,這種發法可以發展成晶圓的量產製程。完成懸空氮化矽基板後,我們開始在基板上製作垂直式約瑟芬接面:利用化學氣相沉積石墨烯作為超導阻障層,在石墨烯的正背面各鍍上超導電極,形成完整的約瑟芬接面。使用的材料包括鋁、鈦/鋁、釩/鋁以及鉛/金。
我們量測垂直約瑟芬接面的電流電壓特性,發現當樣品在常溫下的電阻值大於100kΩ,在低溫下電性會近似於絕緣體,反之則是類似金屬。其中在釩-石墨烯-釩的樣品中觀察到超導臨界溫度為3.6 K,以及在超導溫度之下觀察到樣品的超導電流,在2K時超導電流約為20μA,升高磁場到2.25T時超導電流消失,原因為V電極的超導破壞。此外,注入電流於鈦鋁-石墨烯-鈦鋁樣品時可以促使接面結構發生重構,類似電遷移現象。我們利用不同的電流方向與大小,可以調控出三種不同的電阻值的接面型態。

In this study, we investigate the properties of ultimately short vertical graphene Josephson junctions. A suspended Si3N4 membrane with holes was made on a silicon substrate. Vertical Josephson junctions were made by transferring 2D material on top of the hole, followed by evaporation of superconductor electrodes from the top and bottom.
For the suspended substrate fabrication, we make a silicon nitride layer on the top of the substrate and immerse the pattered wafer in 20% KOH etch solution until the bottom Si was fully etched away to reveal a 80μm×80μm suspended Si3N4 membrane. The holes were sculptured by transmission electron microscope (TEM) on Si3N4 membrane with a 100 nm diameter. This method is clean without photoresist. We also applied a full wafer sized process by patterning the holes using electron beam (e-Beam) writer on Si3N4 membrane before etching away the bottom silicon. Diverse vertical hybrid superconducting devices were made from the structure, including Al, Ti/Al, V/Al, Pb/Al and Pb/Au as the superconductor electrode, and CVD graphene exfoliation graphene as the barrier layer between the electrodes.
We discover that the samples have very largely scattered resistance at room temperature. For samples with a resistance higher than 100kΩ, it shows an insulating behavior and gains huge resistance at low temperature. On the other hand, lower resistance devices present metallic behavior and its resistance does not change much at low temperature. In the V-junction, we successfully observed the supercurrent below the superconducting transition temperature Tc of 3.6K. We also observe the supercurrent suppression by an external magnetic field due to the quench of superconductivity of the V electrodes. The large resistance of the junction is due to the structure fault in the contact region. We tried to reconstruct the Al/graphene/Al and Ti/Al/graphene/Ti/Al junction by annealing and large current driving. We are able to switch the junction resistance state of T4 sample by application of forward and reversed currents.
URI: http://hdl.handle.net/11455/97973
Rights: 同意授權瀏覽/列印電子全文服務,2018-12-27起公開。
Appears in Collections:物理學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-8102054003-1.pdf4.69 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.