Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97978
標題: 化學氣相沉積法成長石墨烯/二硒化鎢/石墨烯電晶體:石墨烯對接點電阻的影響
CVD Graphene/WSe2/Graphene transistors: influence of graphene contacts
作者: 楊豐碩
Feng-Shou Yang
關鍵字: 二硒化鎢;場效電晶體;二維材料;接點電阻;低頻雜訊;WSe2;field effect transistors;Two dimensional material;Contact resistance;low frequency noise
引用: 1. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, 'Two-dimensional atomic crystals.' PNAS, 102(30), 10451-10453(2005). 2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, 'Two-dimensional gas of massless Dirac fermions in graphene.' Nature, 438(7065), 197-200(2005). 3. J. A. Wilson, and A. D. Yoffe, 'The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties.' Adv. Phys, 18(73), 193-335(1969). 4. A. D. Yoffe 'Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems.' Adv. Phys, 42(2), 173-262(1993) 5. J. A. Wilson, and A. D. Yoffe. 'The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties.' Adv. Phys, 18(73), 193-335(1969). 6. Q. H. Huang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano 'Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.' Nat. Nanotechnol., 7(11), 699-712(2012). 7. V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, ' High-mobility field-effect transistors based on transition metal dichalcogenides.' Appl. Phys. Lett. 84(17), 3301-3303(2004). 8. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, 'High-performance single layered WSe2 p-FETs with chemically doped contacts.' Nano Lett., 12(7), 3788-3792(2012). 9. S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, 'High performance multilayer MoS2 transistors with scandium contacts.' Nano Lett., 13(1), 100–105 (2013). 10. H. Liu, M. Si†, S. Najmaei, A. T. Neal, Y. Du, P. M. Ajayan, J. Lou, and P. D. Ye, 'Channel length scaling of MoS2 MOSFETs.' ACS Nano, 6(10), 8563–8569 (2012). 11. H. Liu, M. Si, S. Najmaei, A. T. Neal, Y. Du, P. M. Ajayan, J. Lou, and P. D. Ye, 'Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films.' Nano Lett. 13, 2640–2646 (2013). 12 Y. Liu, H. Wu, H. C. Cheng, S. Yang, E. Zhu, Q. He, M. Ding, D. Li, J. Guo, N. O. Weiss, Y. Huang, and X.F Duan, 'Toward barrier free contact to molybdenum disulfide using graphene electrodes.' Nano Lett. 15(5), 3030-3034(2015). 13. Liu, Yuan, et al. 'Van der Waals heterostructures and devices.' Nature Reviews Materials 1.9 (2016): 16042. 14. I. Ferain, C. A. Colinge and J. P. Colinge, 'Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors.' Nature, 479(7373), 310-316(2011). 15. D. A. Neamen, 'Semiconductor physics and devices basic principles' 4th(2011) 16. M. A. Lampert, 'Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps.' Phys. Rev., 103(6),1648-1656(1956). 17. YANG, Edward S. Microelectronic devices. New York: McGraw-Hill, 1988. 18. D. K. Schroder, 'Semiconductor material and device characterization'. John Wiley & Sons (2006). 19. A. Allain, J. Kang, K. Banerjee ,and A. Kis, 'Electrical contacts to two-dimensional semiconductors.' Nat. Mater., 14(12), 1195–1205 (2015) 20. M. Haartman, and M. Östling., 'Low-frequency noise in advanced MOS devices.' , Springer Science & Business Media.(2007) 21. G. Ghibaudo, 'New method for the extraction of MOSFET parameters.' Electronics Letters, 24(9), 543-545(1988). 22 J. B. Johnson, 'Thermal agitation of electricity in conductors.' Phys. Rev., 32(1), 97(1928). 23. H. Nyquist, 'Thermal agitation of electric charge in conductors.' Phys. Rev., 32(1), 110(1928). 24. K. H. Lundberg, 'Noise sources in bulk CMOS.' Unpublished paper, 3(2002). 25. F. Hooge, '1/f noise is no surface effect.' Phys. Lett., 29, 139-140(1969) 26. O.Jäntsch, 'A theory of noise at semiconductor surfaces.', Solid-State Electronics, 11(2), 267-272(1968) 27. R. Jayaraman, and C.G. Sodini, 'A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon.' IEEE Trans. Electron Devices, 36(9), 1773-1782(1989). 28. D. Rigaud, M. Valenza,and J. Rhayem, 'Low frequency noise in thin film transistors.' Proc. IEEE, 149(1), 75-82(2002). 29. F. N. Hooge, '1/f noise.' Physica B+ C, 83(1), 14-23(1976). 30. K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, 'A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors.' IEEE Trans. Electron Devices, 37(3), 654-655(1990). 31. H. L. Tang, M. H. Chiu, C. C. Tseng, S. H. Yang, K. J. Hou, S. Y. Wei, J. K. Huang, Y. F. Lin, C. H. Lien, and L. J. Li, 'Multilayer Graphene–WSe2 Heterostructures for WSe2 Transistors.' ACS Nano, 11(12),12817-12823(2017). 32. J. Kang, D. Shin , S. Bae and B. H. Hong, 'Graphene Transfer: Key for Applications.' Nanoscale, 4(18), 5527-5537(2012). 33. W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee' Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe2 Field Effect Transistors.' , Nano Lett., 13(5), 1983-1990 (2013). 34. C. H. Chen, C. L. Wu, J. Pu, M. H. Chiu, P. Kumar, T. Takenobu and L. J. Li,. 'Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration.' 2D Materials , 1(3), 034001(2014). 35. J. Huang , L. Yang , D. Liu , J. Chen , Q. Fu , Y. Xiong , F. Lin and B. Xiang, 'Large-area synthesis of monolayer WSe 2 on a SiO 2/Si substrate and its device applications.' Nanoscale, 7(9), 4193-4198(2015). 36. K. Park, Y. Kim, J. G. Song, S. J. Kim, C. W. Lee, G. H. Ryu, Z. Lee, J. Park and H. Kim, 'Uniform, large-area self-limiting layer synthesis of tungsten diselenide.' 2D Materials, 3(1), 014004 (2016). 37. M. H. D. Guimarães, H. Gao, Y. Han, K. Kang, S. Xie, C.J Kim, D. A. Muller, D. C. Ralph, and J. Park 'Atomically Thin Ohmic Edge Contacts Between Two-Dimensional Materials.' ACS Nano, 10(6), 6392−6399(2016). 38. X. Ling, Y. Lin, Q. Ma, Z. Wang, Y. Song, L. Yu, S. Huang, W. Fang, X. Zhang, A. L. Hsu, Y. Bie, Y. H Lee, Y. Zhu, L. Wu, J. Li, P. J. Herrero, M. Dresselhaus, T. Palacios and J. Kong, 'Parallel Stitching of 2D Materials.' Adv. Mater., 28(12), 2322−2329(2016).
摘要: 
二維材料的發現引起許多人的關注,隨著科技的發展,元件尺寸越做越薄,元件的製作也面臨許多挑戰,二維材料與金屬的接觸產生過大的接點電阻,接點電阻會影響電晶體本身的特性使它元件特性變得很差,因此許多人研究橫向石墨烯與二硫化鉬或是石墨烯與二硫化鎢異質結構的接點電阻,證實石墨烯確實能夠降低接點電阻,然而許多人的文獻資料都在研究n型半導體材料,缺乏p型材料是否也適用於此結果。在這裡使用CVD成長石墨烯與二硒化鎢製成異質結構電晶體,並透過直流量測與低頻雜訊量測結果,皆證實石墨烯能夠降低接點電阻(Rsd)使得Graphene/WSe2/Graphene電晶體的Ion/Ioff大於106與各項參數皆有提升,並透過低頻雜訊量測分析載子傳輸機制為載子數擾動(CNF),是因為載子被缺陷捕捉與釋放所引起,缺陷不僅僅來自於介電層表面與通道表面,更包含了通道內的載子缺陷密度,通道內的載子缺陷密度透過分析明顯多於介電層與通道表面的影響,為了實現場效電晶體的應用我們透過示波器量測開關速度與透過外接電路實現邏輯反相器的應用

The discovery of two-dimensional materials has attracted many people's attention, with the development of science and technology, the more thin the component size, the production of components has also face many challenges. The two-dimensional material and metal contact to produce contact resistance, contact resistance will affect the characteristics of the transistor itself so that its component characteristics become very poor. As a result, many people study the contact resistance of transverse graphene and molybdenum disulfide or graphene to the heterogeneous structure of tungsten disulfide. It is confirmed that graphene can actually reduce contact resistance, but many people's literature is studying n-type semiconductor materials, and the lack of p-type materials also applies to this result. The use of CVD grown graphene and WSe2 as a heterostructure transistor, and measured by direct flow measurements and low-frequency noise measurements, have confirmed that graphene reduces contact resistance (Rsd) and makes Graphene/WSe2/graphene transistors Ion/Ioff is greater than 106 and all parameters are elevated. The carrier number fluctuation (CNF) is analyzed by the low frequency noise, because the carrier is caused by the defect catching and releasing. The defect not only comes from the surface of the dielectric layer and the channel surface, but also contains the density of the carrier defect in the channel. In order to realize the application of field-effect transistor, we measure the switching speed of two kinds of components through an oscilloscope and realize the application of logic inverter through the external circuit.
URI: http://hdl.handle.net/11455/97978
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-27起公開。
Appears in Collections:物理學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105054020-1.pdf2.89 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.